Проклятые вопросы
Шрифт:
Перебирая множество способов измерить силу взаимодействия таких невидимых глазу объектов, как электрон и отдельный фотон, Скобельцын, возможно, вспомнил увлекательную игру, называемую китайским бильярдом.
В наклонной доске сделаны лунки. Играющий, толкая шарик, лежащий в гнезде в нижней части доски, должен загнать его в лунку. Шарики, двигаясь по доске, описывают кривые линии. Чем медленнее начинает своё движение шарик, тем больше искривлён его путь. Если толкнуть шарик сильно, то есть сообщить ему большую начальную энергию, он покатится по более пологой кривой. Сила, искривляющая путь
Но если шарики сделать из железа, а вблизи доски поместить сильный магнит, игра вновь приобретает смысл. Теперь магнитное поле, заменив поле тяжести, будет искривлять пути шариков.
Очень похожий по смыслу опыт и был задуман Скобельцыным. Он решил поместить в магнитное поле… камеру Вильсона. Вместо шариков использовать электроны, а роль толкачей поручить фотонам гамма-лучей радия.
Так он и поступил. Взял большой и сильный магнит, поместил между его полюсами камеру Вильсона и пропустил через неё гамма-лучи радия. Лучи, встречая на своём пути атомы вещества, заполняющего прибор, выбивали из них электроны. Чем большую энергию несли с собой лучи, тем большую скорость движения приобретали электроны, тем меньше искривлялся их путь под влиянием магнитного поля.
Теперь учёный получил возможность по характеру искривления путей электронов, следы которых появлялись в приборе, и по углам их вылета из атомов судить не только об энергии электронов, но и об энергии исследуемых лучей.
Это был остроумный и точный способ измерения энергии не только электронов, но любых заряженных микрочастиц. Весть о нём быстро облетела научный мир.
Комптон направил молодому советскому учёному письмо, в котором поздравил его с изобретением нового метода и с важными для науки результатами опыта.
Новый метод широко вошёл в практику физических лабораторий. Он дал в руки учёных способ, которым по кривизне следа электрона или другой заряженной частицы можно определить не только знак заряда, но и энергию частицы. То есть можно опознать её!
Применение магнитного поля для исследования микрочастиц с тех пор стало основным в арсенале физиков. В магнитные поля помещают фотопластинки, огромные пузырьковые камеры и другие устройства, предназначенные для изучения микромира.
Впоследствии метод Скобельцына помог учёным познакомиться с целой плеядой микрочастиц. Но это пришло позже. Когда же Скобельцын впервые применил свой метод, это прежде всего помогло совершить перелом в науке о космических лучах…
…Ничто не предвещало сенсации. Шли будничные опыты. Проводя очередной опыт при помощи камеры Вильсона, Скобельцын разглядел частицу, которая летела в сотни тысяч раз быстрее, чем пуля или снаряд! Дмитрий Владимирович обнаружил след заряженной частицы, путь которой вопреки обыкновению не искривлялся магнитным полем, созданным в камере.
«Ого! — подумал учёный. — Так может вести себя только частица с очень большой энергией. Даже магнитное поле не может заметно искривить её путь! Откуда же она могла взяться?..»
Измерения показали, что ни один из известных земных радиоактивных
Скобельцын пришёл к выводу, что наблюдаемое им явление не земного происхождения. Следы вели в космос.
Постепенно Скобельцын и учёные, продолжавшие изучать причину ионизации атмосферного воздуха, поняли, что наблюдаемые ими явления тождественны, что предполагаемые космические лучи не электромагнитное излучение неизвестного типа, но поток заряженных частиц. Так теперь их и называют: частицами космических лучей, или просто космическими частицами.
С того памятного дня, когда первая частица залетела в прибор Скобельцына, учёный перенёс свою работу в область физики космических частиц и увлёк за собой своих учеников.
Так было посеяно зерно, выросшее со временем в ветвистое дерево новой области физики.
Началось систематическое изучение космических частиц.
Земной шар велик, и часто люди, увлечённые одним и тем же делом, ничего не знают друг о друге. В нашем рассказе наступил момент, когда необходимо вспомнить о замечательном учёном, любовью которого в науке тоже были космические частицы. По происхождению он венгр. Имя его Лайош Яноши. Знавшие его помнят сказанные им мудрые слова: «Чтобы творить современную науку, надо общаться, спорить, критиковать друг друга, помогать друг другу…»
…Перед поездкой в Венгрию друзья предупреждали меня: не увлекайся кофе! Венгерский кофе так крепок, что после маленькой чашечки хочется рубиться на саблях.
Увы, даже две чашки в привокзальном буфете Будапешта не повысили мое настроение.
Спутники по вагону разошлись, а я ещё долго стояла на гудящем от ветра и неприютном в вечерних сумерках перроне в чужом городе, в чужой стране — и никто не спешил мне навстречу.
Где-то что-то не сработало. И тот, кому было поручено меня встретить, не пришёл.
Оставался выход, который я считала запасным. За какой-нибудь час до отъезда из Москвы знакомый дал мне телефон будапештского друга: «Позвоните, если будет время… Петер Варга отлично знает венгерское искусство, любит картины. Милый, тёплый человек. Кстати, он неплохо говорит по-русски».
Случайный разговор… Однако теперь Варга — единственная моя опора в чужом городе, единственный человек, который может мне сейчас помочь!
Петер Варга оказался не только милым человеком. Крупный физик, сотрудник головного института физики Венгерской академии наук, он помог мне осуществить цель моей командировки, познакомил с венгерской наукой, венгерскими учёными. И прежде всего со своим учителем, замечательным учёным, академиком Яноши.
Он же, Варга, помог мне спустя несколько лет, уже после смерти академика Яноши, познакомиться в том же институте с продолжением работ Яноши, с экспериментом, о котором тот мечтал всю жизнь. Было это уже в октябре 1988 года.
А сейчас я расскажу об академике Яноши и о его идеях, Окажись журналист, интересующийся наукой, в Англии, он будет мечтать о встрече с Полем Дираком. Во Франции — с Луи де Бройлем. В Японии — с Хидэки Юкавой. В каждой стране есть свой кумир.
В Венгрии — это Лайош Яноши.