Пролог: Мегатренд альтернативной энергетики в эпоху соперничества великих держав
Шрифт:
Другой тип гидроэнергетических проектов – «русловая ГЭС» – не требует возведения больших плотин и поэтому используется с минимальным воздействием на окружающую среду. Однако эта система менее эффективна, поскольку зависит от колебаний речного течения. Гидроэнергетика малой мощности [48] – еще один вариант, который использует ряд стран. Несмотря на то что малые станции, как правило, экономически менее конкурентоспособны, чем крупные, интерес к развитию малой гидроэнергетики остается высоким в Китае, США и некоторых странах Южной и Восточной Европы. Гидроэнергетика малой мощности может включать в себя строительство новых электростанций или их пристройку к существующим плотинам, как это делается в США.
48
По оценкам правительства Гайаны, для реализации проекта Amaila Falls требовалось $840 млн. Большую часть денег предполагалось взять в Китайском банке развития, еще $175 млн – в Межамериканском банке развития. На государственную электроэнергетическую компанию Guyana Power and Light приходилось около $100 млн, что привело бы в краткосрочной перспективе к увеличению счетов за электроэнергию. За страхование политических рисков разработчики проекта Amaila Falls заплатили $56 млн. Однако, если проект будет успешным и станция выйдет на максимальную мощность 165 МВт, электроэнергии будет больше, чем потребляет Гайана. Hydropower in Guyana: Shrouded in Secrecy, The Economist, May 4, 2013; http://www.economist.com/news/americas/21577090-small-dam-big-argument-shrouded-secrecy.
С
49
Гидроэлектростанции мощностью до 20 МВт.
Помимо гидроэнергетики, существует несколько возобновляемых источников энергии, которые считаются устоявшимися и в настоящее время находятся в центре мегатренда. Лидируют в этом списке ветровая и солнечная энергии, биотопливо и геотермальная энергия.
Ветроэнергетика использует силу ветра для приведения в движение лопастей ветряных турбин [50] . Это хорошо известная технология, которая, возможно, зародилась в Персии и была привезена в Европу крестоносцами в XII в. [51] . Мощности ветроэнергетики постоянно растут, а в некоторых странах рост происходит стремительно [52] . Страны с высоким уровнем производства ветровой энергии могут снизить зависимость от ископаемых видов топлива. В 2016 г. ветроэнергетика покрывала примерно 10,4 % спроса в ЕС и занимала равную или более высокую долю, по крайней мере, в 11 странах – членах ЕС, а также в Уругвае и Коста-Рике [53] .
50
Сирия и Ирак, например, протестуют против турецких проектов по строительству 22 плотин на реках Тигр и Евфрат, поскольку из-за строительства водные потоки крупных рек сократятся ниже по течению, а вместе с этим – и объем воды, доступной для фермеров. Экологический баланс рек и прибрежных земель окажется под угрозой.
51
Вращение лопастей турбин создает электрический ток, который используется на ветряных электростанциях и в национальных электросетях. Небольшие индивидуальные турбины обеспечивают электроэнергией отдаленные районы или отдельные дома.
52
4 U. S. Department of Energy, History of U. S. Wind Energy, Energy Efficiency and Renewable Energy; https://www.energy.gov/eere/wind/history-us-wind-energy.
53
Там же.
Тем не менее существует несколько хорошо известных проблем, связанных с ветроэнергетикой. К ним относятся отсутствие инфраструктуры передачи электроэнергии, задержки в подключении к сети и недоверие со стороны части общественности. Нормативы, ограничивающие производство энергии, и существующие системы менеджмента затрудняют интеграцию больших объемов ветровой энергии в энергобалансе возобновляемых источников энергии [54] . Ветровая энергия также характеризуется нестабильностью, а низкая удельная мощность может ограничить ее широкое применение. Кроме того, скептики высказывают опасения по поводу влияния ветроэнергетики на здоровье человека, включая возможные слуховые и поведенческие эффекты, и возможного вмешательства в работу других объектов инфраструктуры. Однако риски для здоровья и другие опасности, связанные с ветряными турбинами, в своей массе остаются недостаточно обоснованными, а проблемы нестабильности поставок могут быть решены, например, путем широкого географического распределения мощности крупных «ветряных ферм», например тех, что расположены в Северном море.
54
REN21. Renewables 2017 Global Status Report.
В финансовом отношении ветроэнергетика часто способна конкурировать с традиционными источниками без государственных субсидий, а в некоторых случаях она достигла сетевого паритета. В 2016 г. на многих рынках, включая Бразилию, Канаду, Чили, Мексику, Марокко, Южную Африку, Турцию, Китай, Европу, США и некоторые районы Австралии, наземная ветроэнергетика уже была наиболее экономически эффективным вариантом для новых энергосистем [55] . Тем не менее ветроэнергетике необходим качественный скачок в технологическом развитии для преодоления проблем прерывистости, чтобы по-настоящему конкурировать с ископаемым топливом.
55
Там же.
Как достоинства, так и недостатки ветроэнергетики имеют геополитические последствия. Пока General Electric в США разрабатывает новые технологии турбин, предназначенных для использования в районах со слабыми воздушными потоками, широкое распространение ветроэнергетики, в конечном итоге, будет на руку тем заинтересованным сторонам, которые имеют доступ к географическим пространствам с оптимальными ветровыми условиями. Это повлечет за собой две проблемы. Во-первых, ветровая энергия принесет пользу только некоторым странам, что, как и географическое распределение ископаемых ресурсов, может быть воспринято как фактор неравенства и эксплуатации в долгосрочной перспективе. Во-вторых, офшорная ветроэнергетика, в частности, может развязать споры о международных водных юрисдикциях и их использовании, несмотря на успешные примеры международной передачи энергии в Европе.
Солнечная энергия, теоретически, обладает самой высокой генерируемой мощностью среди всех возобновляемых источников энергии [56] . В принципе, она ограничена только сроком жизни солнца. На протяжении всей истории человечества этот тип энергии приковывал к себе внимание. В 1931 г., незадолго до смерти, Томас Эдисон сказал своим друзьям Генри Форду и Харви Файрстоуну: «Я бы поставил деньги на солнце и солнечную энергию. Какой источник энергии! Надеюсь, нам не придется ждать, пока нефть и уголь закончатся, прежде чем мы займемся этим» [57] .
56
Там же.
57
Илон Маск утверждал, что если бы «единственное, чем мы располагаем, была солнечная энергия, то, взяв небольшой участок территории Испании, мы обеспечили бы энергией всю Европу».
58
James Newton, Uncommon Friends: Life with Thomas Edison, Henry Ford, Harvey Firestone, Alexis Carrel & Charles Lindbergh (New York: Harcourt Brace Jovanovich, 1987), 31.
59
Фотоэлектрическая технология преобразует солнечную энергию напрямую в электричество посредством фотоэлемента из полупроводникового материала. Технология концентрации солнечной энергии (CVP) позволяет концентрировать энергию солнечных лучей и таким образом нагревать приемник солнечного излучения до высоких температур. Сначала полученное тепло преобразуется в механическую энергию (с помощью турбин или других двигателей), а затем – в электричество. International Energy Agency,(дата обращения: 13.05.2014). В конце 2012 г. мировая мощность фотоэлектрических установок превысила 100 ГВт. REN21, Renewables 2013 Global Status Report (Paris: REN21, 2013), 40.
60
World Energy Council, World Energy Resources Report 2016; https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf.
61
Там же.
62
REN21, Renewables 2017 Global Status Report.
В случае более широкого использования солнечной энергии политическая география электроэнергии может прямо и косвенно влиять на геоэкономическую и геополитическую динамику отношений между государствами. Солнечная энергия может стать ценным ресурсом для менее развитых стран. Технологии использования солнечной энергии широко распространены и могут обеспечить геополитические преимущества странам с более высокими показателями солнечного облучения. Однако, для того чтобы страны могли использовать солнечную энергию в качестве геополитического инструмента, им потребуются значительные инвестиции. Страны с развитой экономикой имеют больше шансов достичь технологического прогресса в солнечной энергетике из-за больших финансовых возможностей.
Энергия биомассы связана с живыми и неживыми биологическими материалами, такими как растительная масса, абиотические деревья и сучья, скошенная трава и древесная щепа. Все это может быть использовано в качестве топлива для промышленного производства или для выработки электроэнергии [63] .
Биотопливо давно рассматривается как реальный источник энергии [64] . В 1893 г. Рудольф Дизель, изобретатель дизельного двигателя, заметил: «Использование растительного масла в качестве топлива сегодня может показаться пустяком. Но со временем такие продукты могут стать столь же важными, как керосин и сегодняшние продукты перегонки каменноугольного дегтя» [65] .
63
CPV – это тип фотоэлектрической технологии, в которой используются линзы или изогнутые зеркала для фокусировки солнечного света на маленькие и высокоэффективные солнечные элементы.
64
Промышленная биомасса производится из таких растений, как мискантус, коммутационная трава, конопля, кукуруза, тополь, ива, сорго, сахарный тростник и различные виды деревьев от эвкалипта до пальмового дерева. Вид растения имеет большее значение для технологии переработки, чем для конечного продукта. Биотопливо на основе водорослей и этанол второго поколения (целлюлозный) должны открыть новые возможности, как только пройдут стадию пилотных проектов. Nancy Stauffer, Research Spotlight: Algae System Transforms Greenhouse Emissions into Fuel, The MIT Energy Research Council, 2006;(дата обращения: 05.12.2013).
65
К концу 2012 г. введено почти 83 ГВт энергетических мощностей на основе биомассы. REN21, Renewables 2013 Global Status Report, 27.
Сама по себе технология далеко не нова и может использоваться в качестве прямой замены ископаемому топливу. Хотя в целом производство неуклонно растет, колебания климата стран-производителей, условий сбора урожая и внешних экономических факторов, таких как цены на продовольствие и ископаемое топливо, могут препятствовать росту сектора. Доля биоэнергетики в общем мировом потреблении первичных энергоресурсов оставалась относительно стабильной с 2005 по 2017 г. и составляла около 10,5 %, несмотря на 21 %-й рост общего мирового спроса на энергию за последние 10 лет [66] .
66
Rudolf Diesel, The Theory and Construction of a Rational Heat Engine (London: E & F. N. Spon, 1894), 9.