Простое начало. Как четыре закона физики формируют живой мир
Шрифт:
Если каналы могут только открываться и закрываться, то другие белки способны на более замысловатые упражнения. На следующем рисунке я изобразил димер из двух молекул белка кинезина5. Как подсказывает его название, этот белок участвует в движении. Молекула кинезина представляет собой длинный стебель, соединенный гибким аминокислотным шарниром с основанием в виде луковицы. Спиральные стебли двух молекул переплетаются и верхними частями специфически прикрепляются к грузу, который необходимо переместить внутри клетки. Грузом могут быть, например, мембранные пузырьки с химическими веществами, которые синтезируются в теле нейрона, а ожидать высвобождения должны на его периферии. Сформированный комплекс моторного
15
Свежие представления о механизмах движения кинезина (и очень понятную картинку) можно найти в статье Fei J., Zhou R. Watching biomolecules stride in real time. Science. 2023; 379 (6636): 986–987. Короткая анимация: https://www.youtube.com/watch?v=ilgdFvit49Y.
Строение белков влияет на их взаимодействие как друг с другом, так и с веществами иной природы – например, с ДНК. В следующих двух главах мы увидим, что многие белки прикрепляются к ДНК, чтобы руководить считыванием генетической информации. Эти ДНК-связывающие белки должны принимать форму, соответствующую изгибам двойной спирали ДНК. В таких белках часто встречаются спиральные мотивы, способные укладываться в бороздки ДНК. Для примера я изобразил гормон-чувствительную молекулу, называемую глюкокортикоидным рецептором6. (Эти белки работают в парах; широкими спиральными лентами я показал прилежащие к ДНК участки такой пары.) Когда к рецептору прицепляется гормон кортизол, его структура меняется, и только тогда он получает возможность связываться с ДНК и запускать последовательность событий, которая среди прочего подавляет воспалительный иммунный ответ [16] . Вероятно, вы знакомы с кортизолом, под названием «гидрокортизон» входящим в состав мазей, и извлекали пользу из его способности активировать рецепторы: у вас уменьшались покраснение, зуд и отечность от укусов насекомых и контакта с ядовитым плющом или другими раздражителями.
16
Простая анимация процесса: https://www.youtube.com/watch?v=bvG0pstNyOo.
Как мы увидели, структура белка тесно связана с его функцией, однако свою конечную форму он приобретает не сразу. Каждый белок создается клеточными машинами, которые последовательно прикрепляют одну аминокислоту к другой, составляя из них цепочку, как из скрепок. Не существует никакого каркаса, который определял бы укладку такой цепочки, организуя ее в стопки листов, клубки спиралей или другие формы из почти бесконечного многообразия. Белок сам моделирует себя, укладываясь в пространстве должным образом: факторы, определяющие его структуру, зашифрованы прямо в его аминокислотной последовательности. Иными словами, белок осуществляет самосборку.
Каждая из 20 аминокислот обладает определенным набором физических характеристик. Одни аминокислоты заряжены положительно, другие – отрицательно, третьи нейтральны. Одни большие, другие маленькие. Какие-то из них гидрофобные (по сути, жирные) и предпочитают не смешиваться с водой, другие – гидрофильные и легко с ней смешиваются. Представьте белок, в котором подряд идут несколько положительно заряженных аминокислот, затем – цепочка нейтральных гидрофильных аминокислот, а после них – несколько отрицательно заряженных (см. рисунок). Разноименные заряды притягиваются, поэтому, предоставленный сам себе, белок укладывается так, что его противоположные концы сближаются.
Теперь представьте белок, состоящий из гидрофобных (квадратики) и гидрофильных (кружочки) аминокислот. Этот белок окружен водой (преобладающим компонентом внутриклеточной среды) и укладывается так, чтобы гидрофобные фрагменты прятались в центре кольца из любителей воды. Ради ясности я нарисовал эту схемку в двух измерениях. На самом же деле вам нужно представить почти сферическое ядро из гидрофобных аминокислот, окруженное оболочкой из гидрофильных.
В любом реальном белке происходит множество таких взаимодействий между аминокислотами, а также между аминокислотами и окружающей их водой, что порождает силы, вынуждающие белок принять определенную конформацию. Каждый белок синтезируется в клетке как цепочка аминокислот, и эта цепочка укладывается в оптимальную трехмерную форму. По-научному этот процесс называется фолдингом белка.
Как почти всегда бывает в биологии, эта грубая картина не совсем верна. Некоторые белки, особенно крупные и склонные к агрегации, не укладываются без доли постороннего участия, и им на помощь приходят белки из класса шаперонов7. В комплексах белков-шаперонов есть полости, защищающие новорожденный белок от сложностей перегруженной клеточной среды и способствующие корректному фолдингу аминокислотной цепи. Несмотря на эпизодическое участие шаперонов, общий принцип содержания в белке плана собственной постройки весьма убедителен и широко распространен в живой природе.
Все белки, описанные выше, и десятки тысяч других за долю секунды укладываются в трехмерные формы, избегая бесчисленного множества неудачных вариантов, которые не вполне соответствуют предпочитаемым компонентами белка взаимодействиям. Такое мастерство удивительно: это как если бы листок бумаги вдруг сам сложился в идеальную фигурку оригами. Более того, форма подавляющего большинства белков однозначно определяется последовательностью аминокислот. Иными словами, одна и та же последовательность всегда укладывается в пространстве одинаково. Каждая молекула зеленого флуоресцентного белка формирует бочонок, а каждая молекула миоглобина – одинаковый набор завитков.
Оценить великолепие такой самоорганизации помогут несколько примеров. Представьте последовательность, в которой, как обычно, есть положительно и отрицательно заряженные аминокислоты, а также гидрофобные и нейтральные гидрофильные аминокислоты. (Кстати, заряженные аминокислоты всегда гидрофильны.) Наша цепочка может уложиться так, как показано на левом рисунке, – и это достаточно хорошо: гидрофобные фрагменты скрыты внутри, а разноименно заряженные – сближены. И структура на правом рисунке по тем же причинам будет не хуже.
Две представленные конформации, несомненно, различаются. Можно предположить, что если этому белку потребуется прикрепиться к какой-нибудь малой молекуле – например, к гормону, – то благодаря «карману» функциональной окажется лишь первая форма.
Оказывается, на удивление сложно понять, как цепочка аминокислот принимает единственную оптимальную форму. Анализ сил, воздействующих на случайную последовательность аминокислот – скажем, составляемую вслепую, вытягиванием аминокислот из шляпы, – и оценка затрат энергии показывают, что «достаточно хороших» конформаций могло бы возникать очень много, слишком много для того, чтобы цепочка в итоге неизменно укладывалась только в одну из них. Природа избегает такой множественности возможных форм: аминокислотные последовательности реально существующих белков не случайны, а отобраны за 4 миллиарда лет эволюции. Организмы, которые кодируют аминокислотные цепи, не укладывающиеся в одну оптимальную форму, страдают от нерабочих, а порой и вредных белков и потому имеют меньше шансов выжить и оставить потомство. Эволюционно устойчивыми оказываются организмы, которые кодируют аминокислотные последовательности с четкой и однозначной инструкцией по формированию трехмерной структуры.
Результатом этого, как мы видели, стало общее правило однозначного соответствия аминокислотной последовательности и пространственной структуры у белков, которые мы сейчас находим в человеческом и других организмах. Если нам известна структура одной молекулы кинезина, то мы знаем и структуру любой другой молекулы кинезина. То же самое и с рецепторами кортизола. Впрочем, не бывает правил без исключений, а исключения из этого правила важны исключительно.