Против богов: Укрощение риска
Шрифт:
Следствием такого развития событий было изгнание мистицизма. К этому времени Мартин Лютер обнародовал свои тезисы и в изображениях Святой Троицы и святых перестали писать нимбы. Уильям Гарвей открыл систему кровообращения, что опровергло медицинские воззрения древних, а Рембрандт создал картину «Урок анатомии», поражающую безнадежным холодом белого обнаженного человеческого тела. В этих условиях кто-нибудь должен был разработать теорию вероятностей, даже если бы шевалье де Мере не озадачил Паскаля своей головоломкой.
Шли годы, математики превратили теорию вероятностей из забавы игроков в могучий инструмент обработки, интерпретации и использования информации.
К 1725 году математики уже соревновались друг с другом в составлении таблиц ожидаемой продолжительности жизни, а британское правительство для пополнения бюджета продавало права на пожизненную ренту. К середине XVIII века в Лондоне уже вовсю велись операции по страхованию мореплавания.
В 1703 году Готфрид фон Лейбниц в письме к швейцарскому математику Якобу Бернулли заметил, что «природа установила шаблоны, имеющие причиной повторяемость событий, но только в большинстве случаев»1. Это замечание подтолкнуло Бернулли к открытию закона больших чисел и разработке методов статистической выборки, получивших широкое применение в столь разных областях, как опросы общественного мнения, дегустация вин, управление складскими запасами и тестирование новых лекарств [3] . Замечание Лейбница – «но только в большинстве случаев» – оказалось более глубоким, нежели он мог предполагать, потому что указывало на огромную роль риска: не будь риска, все было бы предопределено и в мире, где каждое событие идентично предшествующему, даже изменения были бы невозможны.
3
В главе 7 подробно описываются достижения Якоба Бернулли. Закон больших чисел, по существу, утверждает, что различие между средними значениями величин, наблюдаемыми в выборке, и истинным средним значением по всей совокупности будет уменьшаться при увеличении объема выборки.
В 1730 году Абрахам де Муавр установил форму нормального распределения, известного как колоколообразная кривая, и ввел понятие среднего квадратичного отклонения. Оба эти понятия привели к широкоизвестному закону о среднем и являются важнейшими ингредиентами современной техники исчисления риска. Восемь лет спустя Даниил Бернулли, племянник Якоба и тоже выдающийся математик, впервые описал процесс выбора и принятия решений. И что еще важнее, он высказал мысль, что удовлетворение от любого малого приращения богатства «будет обратно пропорционально количеству уже имеющегося добра». Это внешне простодушное утверждение Бернулли объяснило, почему царь Мидас был несчастлив, почему люди неохотно идут на риск и почему нужно снизить цены, чтобы убедить людей покупать большее количество товара. С тех пор закон Бернулли остается главной парадигмой рационального поведения и стал основой современных принципов управления инвестициями.
Почти через сто лет после сотрудничества Паскаля и Ферма диссидентствующий английский священник по имени Томас Байес осуществил впечатляющий прорыв в статистике, продемонстрировав, как можно повысить качество решений на основе математической обработки сочетания новой и старой информации. Теорема Байеса рассматривает часто встречающуюся ситуацию, когда мы имеем интуитивное суждение о вероятности некоторого события и хотим понять,
Между 1654-м и 1760 годами были разработаны все средства, используемые нами сегодня в управлении риском при анализе решений и выборе системы поведения, от строго рационального подхода теории игр до хитросплетений теории хаоса. За пределами этого периода оказались только два важных открытия.
В 1875 году Фрэнсис Гальтон, двоюродный брат Чарлза Дарвина и математик-дилетант, открыл регрессию, или возврат к среднему, объяснившую, почему взлет предшествует падению, а контуры туч подбиты серебристым сиянием. Принимая любое решение, базирующееся на предположении, что все вернется к «норме», мы используем понятие регрессии к среднему значению.
В 1952 году нобелевский лауреат Гарри Маркович (Markowitz), тогда еще молодой аспирант, изучавший исследование операций в Чикагском университете, используя математические методы, объяснил, почему неразумно помещать все яйца в одну корзину и почему инвестор, вкладывающий деньги в разные предприятия, может спать сравнительно спокойно. Это открытие положило начало интеллектуальному направлению, которое революционизировало Уолл-стрит, финансовое управление в корпорациях и процессы принятия деловых решений по всему миру. Последствия этого открытия ощутимы и сегодня.
История, которую мне предстоит рассказать, отмечена постоянным спором между теми, кто утверждает, что лучшие решения основываются на квантификации и числах, определенных на основе анализа уже происшедших событий, и теми, чьи решения в большей степени базируются на субъективных представлениях о неясном будущего. Этот спор не разрешен и поныне.
Вопрос заключается в том, насколько прошлое определяет будущее. Мы не можем вычислить будущее, потому что оно неизвестно, но мы научились использовать числа для понимания того, что произошло в прошлом. Так до какой степени можно надеяться, что ход событий в будущем будет соответствовать тому, что было в прошлом? Что важнее в ситуациях риска – факты, как мы их видим, или наше субъективное представление о том, что скрывается за завесой времени? Является ли управление риском наукой или искусством? Можем ли мы хотя бы примерно определить, где находится граница между этими двумя подходами?
Можно построить математическую модель, которая покажется объясняющей все трудности. Но когда мы столкнемся с повседневной жизнью, с постоянным потоком проб и ошибок, неоднозначность фактов и напор страстей могут перечеркнуть модель в считанные минуты. Покойный Фишер Блэк (Black), один из пионеров современной теории финансов, который бросил Массачусетский технологический институт (МТИ) ради Уолл-стрит, говорил: «Рынки выглядят гораздо менее рациональными и упорядоченными с берегов Гудзона, нежели с берегов реки Чарли»2.
Со временем противопоставление квантификации, основанной на наблюдениях за прошедшими событиями, субъективной оценке будущего приобрело куда большее значение. Современный математический аппарат управления риском содержит семена дегуманизации и саморазрушения. Нобелевский лауреат Кеннет Эрроу (Arrow) предостерегал: «Наши знания о ходе дел в обществе и в природе тонут в тумане неопределенности. Вера в определенность <…> бывала причиной многих бед»3. Освобождаясь от прошлого, мы можем стать рабами новой религии, убеждений столь же неправомерных, ограниченных и произвольных, как и старые предрассудки.