Психология финансов
Шрифт:
Или рассмотрим движения океана. На поверхности воды мы видим зыбь, нечто среднее между зыбью и волнами и, наконец, сами волны, каждая седьмая из которых часто больше остальных. Если трение ветра о воду приводит к таким явлениям, как зыбь, волны и «суперволны», можно говорить об этом феномене, как обладающем признаками фрактальности. Но это определение оправдывается только в том случае, если причиной подобного явления феномена был только ветер.
Уникальность метода Мандельброта в том, что он не стремился изучать только это явление в пределах только вполне определенных границ (например, химиков не допускают к профессиональным исследованиям в области ядерной физики, хотя предмет изучения может быть описан химическими формулами), а пытался понять всю структуру в целом, рассматривая ее с точки зрения проявления эффекта бифуркации (процесса разветвления), который она производила. Точно таким же образом мы можем считать зыбь «крохотными
Важно, что мы регулярно обнаруживаем экономические и финансовые явления, повторяющие самих себя на разных шкалах [9] . Некоторые из подобных явлений мы еще увидим в этой книге. Случайно вы наверняка можете обнаружить явление, которое, возможно, фрактальное, но в действительности столь же независимое, как морские волны. Одним из таких явлений можно назвать, например, экономические циклы.
9
Также можно сказать: в различных масштабах, что более соответствует практике анализа поведения финансовых инструментов и рынков. Например, минутные интервалы, часовые, дневные, недельные, и т. д. — Прим. научн. ред.
Общий взгляд финансовых трейдеров | Общий взгляд теории случайных блужданий | Общий взгляд теории хаоса | |
---|---|---|---|
Содержат ли рыночные движения какую-либо структуру? | Да, существуют структуры, и есть выявленные правила формирования | Статистические исследования четко отражают, что движения цен финансовых инструментов случайные. Если они перестают быть случайными на некоторое время, то начинают работать правила, которые становятся настолько общеприменимыми, что вскоре перестают иметь какое-либо значение | Хаотичные временные ряды возникают случайно, если доступны тестированию традиционными статистическими методами. Однако если вместо этого вы проверите их на хаос, то на самом деле хаос и обнаружите. Следовательно, правила могут работать, но в реальности взаимодействие различных факторов чрезвычайно сложное, так как на рынке множество неотъемлемых от него положительно воздействующих эффектов обратной связи |
Возможно ли, в принципе, превзойти финансовые рынки? | Да, можно предсказать поведение финансовых рынков, если вы достаточны квалифицированы | Никто не может предсказать, что является случайным | Спрогнозировать поведение хаотических систем не только нелегко, но и не возможно |
Может ли отдельный индивидуум постоянно превосходить рынки? | Никто не может превосходить их постоянно, но у лучших трейдеров определенно есть большое преимущество | Это всего лишь вопрос удачи и статистики. Всегда есть кто-то удачливее, чем остальные | Это может быть вопросом как квалификации, так и статистики. Всегда есть кто-то умнее всех остальных |
На интуитивном уровне кажется верным, что равновесные экономические и финансовые системы — место проявления фрактальных явлений, эффектов бабочки и бифуркации. Или, другими словами, хаоса. Тем не менее экономистам-теоретикам потребовалось много времени, чтобы начать исследовать феномен хаоса. Но в начале 80-х годов XX столетия исследователи стали серьезнее заниматься изучением индикаторов экономического хаоса и в течение нескольких лет провели важные наблюдения (см. Ploeg, 1985, Chirella, 1986, Chen, 1986, Lorenz, 1987, Brock и Sayers, 1987, Rasmussen и Mosekilde, 1988). Чем дальше мы продвигались, тем больше обнаруживали признаки моделей, отражающих феномен хаоса в экономических системах.
Теперь есть все признаки, что систематическая эндогенная долгосрочная непредсказуемость имеет место во многих экономических и финансовых системах. Даже там, где успокаивающие механизмы сильны или где хаос не возникает в интервале текущего параметрического интервала, импульсы от других хаотических подсистем способны значительно увеличить неопределенность. Образно говоря, проблему можно сравнить со срубленным деревом, проходящим через речную стремнину. Даже если бы мы знали все, что нужно знать о гидродинамике, воде и форме русла, мы бы никогда не смогли просчитать траекторию бревна дальше чем на несколько метров за один раз. Также было бы невозможно определить, откуда оно пришло, основываясь на его положении в данный момент времени. Подобная аналогия применима и к экономике.
Следовательно, имеет место возрастающее осознание, что детерминированный хаос может иметь важное значение для более глубоко проникающих во временные пласты долгосрочных экономических прогнозов и что линейные модели дают весьма скудное представление о реальности. Понятно также, что динамические системы часто повторяют те же самые явления в различных масштабах, привнося, таким образом, больше сложностей в проблему прогнозирования.
Важный аспект, имеющий отношение к хаосу, это «размерность». Это слово используется математиками для описания сложного поведения динамической системы. Несмотря на то, что размерность — математическое выражение, оно может быть объяснено (популярным языком), как обозначение числа прошлых наблюдений для предсказания последующего движения.
Если система генерирует простые, синусоидальные осцилляции, предсказание становится пустячным делом и размерность равна нулю. Но если мы имеем дело с очень большим количеством взаимосвязанных обратных связей — положительных и отрицательных, — размерность резко возрастает, и вам понадобится много данных для «расшифровки» с помощью математики того, где вы находитесь в данный момент протекающего процесса. Когда размерность становится очень высокой, то даже очень большое количество исторических данных уже не поможет вам. Однако в этом случае невозможно доказать математическими методами присутствие неслучайной динамики. Как сказал Вильям А. Броук (1990), «на практике невозможно даже сказать, что образовало данные — детерминированная система высокого порядка или стохастическая система».
Основываясь на современных положениях науки, становится понятным, что в реальности над финансовыми рынками господствуют сильные контуры обратной связи, создающие хаос высокого порядка (определяемый высокими значениями размерности), который математически расшифровать крайне сложно. Это частично доказывается математическими тестами, показывающими, что существует «нечто», не являющееся случайным, — даже просто невозможно точно выразить, что это именно такое. Частично это было доказано нашими периодически повторяющимися крахами, демонстрирующими присутствие сильных контуров обратной связи.
Если детерминированный хаос — это то, что мы имеем, попытки аналитиков выполнить точные расчеты истинной величины начинают выглядеть, как попытки заниматься алхимией. Учитывая, что определение истинной стоимости акции исходит из того, что она приведенная стоимость всей будущей прибыли компании, то это просто смешно, если мы можем предвидеть только год, шесть месяцев или даже и того меньше.
Возможно, нам следует вспомнить ранее приводимое описание поведения профессиональных экспертов, сделанное Кейнсом:
…большинство из этих людей сильно беспокоит не создание первоклассных долгосрочных прогнозов возможного дохода от инвестирования на всем его протяжении, а предсказание изменений в условном базисе оценивания, которое бы шло чуть впереди основной публики.
Вывод заключается не в том, что понимание экономики неуместно в отношении акции, — нет, никоим образом. Суть хаоса в том, что попытки предсказать длинные цепи событий или дать долгосрочные количественные прогнозы близки к абсурду. Хотя Кейнс вряд ли был хорошо знаком с позициями, на которых стоит нелинейная математика, в своей Основной теории он сделал следующий вывод: