Чтение онлайн

на главную

Жанры

Психология критического мышления
Шрифт:

Большинство медсестер предположило, что зависимость существует, основывая свое решение на том факте, что у 37 пациентов присутствовало заболевание и симптомы, а у 13 не было ни болезни, ни ее симптомов. Тот факт, что в 33 случаях присутствовали симптомы, но не было болезни, а в 17 случаях была болезнь, но не было симптомов, они игнорировали. Эти медицинские сестры и, что более важно, врачи просто отбросили половину доступной им информации. Правильное решение заключается в том, что взаимосвязи здесь не существует, поскольку велика вероятность существования болезни без симптомов или симптомов без болезни. Вы можете понять это, посмотрев на маргинальные величины, расположенные в конце строк и столбцов. Подумайте о смысле этих величин и о том, каким образом они подтверждают вывод об отсутствии зависимости. Если вы только что завершили

чтение главы 7, вы сможете понять, каким образом вероятностные данные, используемые в процессе принятия решения в данном контексте, соотносятся с принципами мышления, которые обсуждались в этой главе. Решение нередко принимается на основе вероятностной информации, а ошибки при принятии решений, использующих теорию вероятности, как в данном случае, являются наиболее распространенными среди людей самых разных профессий. Мы должны изучить все наиболее распространенные заблуждения, потому что опытный человек, принимая решение, должен знать чего следует опасаться, точно так же как и что делать.

A. Из всех, имеющих симптомы, 52% (37/70) имеют и заболевание. Это значит, что если у вас есть симптомы, то вы с равной вероятностью можете иметь заболевание или не иметь его.

Б. Из всех, имеющих заболевание, 68% (37/54) имеют и симптомы. Это значит, что если у вас есть заболевание, то вы с вероятностью 2/3можете иметь его симптомы.

B. Из всех, не имеющих заболевания, 72% (33/46) имеют и симптомы. Это значит, что если у вас нет заболевания, то вы с вероятностью 2/3 можете иметь его симптомы.

Г. Из всех, не имеющих симптомов, 56% (17/30) имеют заболевание. Это значит, что если у вас нет симптомов, то вы с вероятностью больше 50 % можете иметь заболевание.

Рис. 8.2. Количество пациентов в каждой категории «заболевание/симптомы».

Существует ли зависимость между заболеванием и симптомами? Внимательно посмотрите на маргинальные значения и подумайте о том, какую информацию они предоставляют о возможности существования зависимости между заболеванием и симптомами.

Ловушки, подстерегающие нас при принятии решений

… Поворотные моменты истории происходят тогда, когда кто-то один полагает, что надо что-то делать, а кто-то другой принимает решение сделать это.

Арке и Хэммонд (Arkes Hammond, 1986, p. 211-212)

Ловушка – это опасность или трудность, которой нелегко избежать. Давайте рассмотрим наиболее распространенные ошибки, совершаемые при принятии решений.

Неспособность увидеть очевидное противоречие

Самые страшные несчастья, которые постигают народы, являются следствием неправильных суждений или искаженных представлений политических лидеров

Круглански (Kruglanski, 1992, р. 455)

Представьте себе, что у вас есть друг, который постоянно занят решением кроссвордов, загадок, анаграмм, лабиринтов и прочих подобных задач из книги головоломок. И вот в один прекрасный день он загоняет вас в угол и озадачивает следующей проблемой:

Я дам тебе последовательность чисел. Эта последовательность подчиняется простому правилу Тебе надо распознать это правило. Для того чтобы это сделать, надо составить свою собственную последовательность чисел А я скажу, соответствует ли твоя последовательность этому правилу. Для того чтобы распознать правило, ты можешь давать столько своих последовательностей, сколько тебе потребуется. Если ты будешь уверен в том, что понял правило, то скажи мне его, а я скажу тебе, прав ли ты. Вы неохотно соглашаетесь. Вам дается такая последовательность

2 4 6

Теперь остановитесь и подумайте, как вы будете выстраивать свою последовательность, чтобы она соответствовала правилу.

Эту задачу давали большому количеству испытуемых в экспериментах, проведенных Уэйсоном (Wason, 1960, 1968). Он обнаружил, что у многих людей решение этой задачи вызывает затруднения. Для проверки правила испытуемые предлагают последовательность «14, 16, 18». Экспериментатор отвечает, что эта последовательность соответствует правилу. Для пущей уверенности многие испытуемые пробуют последовательность «182, 184, 186». Экспериментатор снова дает положительный ответ. Тогда испытуемый, совершенно уверенный в правильности ответа, говорит: «Это возрастающая последовательность четных чисел». И тогда экспериментатор сообщает, что правило названо неправильно.

В большинстве случаев испытуемый будет делать новые попытки, отыскивая новое правило, которое будет корректно описывать эти последовательности чисел. Предположим теперь, что испытуемый предполагает такое правило: «Значение второго числа – это среднее арифметическое крайних». Тогда предлагаемые им последовательности могут быть такими «50, 100, 150» или «1006, 1007, 1008». Экспериментатор отвечает, что эти последовательности являются правильными. Еще более уверенный в правильности найденного закона, испытуемый гордо сообщает экспериментатору формулировку найденного правила: «Значение второго числа – это среднее арифметическое крайних». А экспериментатор сообщает ему, что это правило является тоже неверным.

А вы уже нашли правило? Это «последовательность возрастающих целых чисел». Во время эксперимента Уэйсона один несчастный после утомительной часовой работы сформулировал следующее правило: «Первое число меньше второго на два, третье является случайным числом, но больше второго, либо третье число равно второму числу плюс два, а первое число является случайным, но меньше второго». Можете представить себе, каково ему было, когда он услышал, что его ответ был неверным.

Почему эта задача оказалась такой трудной? Во всех предлагаемых последовательностях люди пытались подогнать числа к формулировкам правил, которые держали в своем сознании. На самом, деле существует бесконечное множество последовательностей, которые соответствуют правилу «последовательность любых целых чисел в порядке возрастания». Например, вы считаете, что искомое правило – это «любая последовательность идущих подряд четных чисел» – и, соответственно, предлагаете последовательность «6, 8, 10». Ну а после того как экспериментатор говорит вам, что вы правы, вы смело высказываете свою гипотезу, которая на деле оказывается неверной.

Тенденция подбирать ту информацию, которая соответствует нашим представлениям, называется тенденцией к подтверждению, или предвзятостью. У всех нас есть такая склонность. Другой пример действия тенденции к подтверждению и неспособности увидеть очевидное противоречие приводится в главе 4. Это та же самая ошибка, которая была описана в предыдущем разделе, когда медицинские сестры не смогли учесть факты, опровергающие их гипотезы о взаимосвязи между симптомами и заболеваниями. Подобная тенденция является очень распространенным явлением и встречается в самых разных областях. Например, недавние исследования работы присяжных и того, как принимаются решения о вине или невиновности подсудимого показали, что присяжные нередко конструируют правдоподобную историю того, что могло произойти на месте преступления. Затем среди информации, раскрытой в ходе расследования, они выбирают только то, что подтверждает их версию (Kuhn, Weinstock, Flaton 1994). Таким образом, решение присяжных тоже в значительной степени зависит от подбора свидетельств, которые подтверждают представления самих присяжных.

Какой вывод можно сделать о тенденции к выборочному восприятию информации и поиску подтверждающих свидетельств? Представьте себе, что к вашему лучшему другу пристают с предложением вложить средства в «очень выгодное дело», «не упустить единственный шанс в жизни». Энергичная дама предлагает воспользоваться уникальной возможностью и инвестировать в новую корпорацию, которая будет производить миниатюрные компьютеры, умещающиеся в бумажнике. Звучит заманчиво, но ненадежно. Ваш друг благоразумно решает навести справки. Он проверяет десять компьютерных фирм, зарегистрированных на Нью-Йоркской фондовой бирже. Он видит, что IBM – крупная и процветающая компания, приносящая огромные прибыли. Если бы он когда-то, на ранних стадиях формирования фирмы, вложил средства в развитие IBM, то сейчас он был бы богачом. Он уже представляет себе, что прикуривает сигары от десятидолларовых банкнот. Какой совет вы дадите своему другу?

Поделиться:
Популярные книги

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2