Психология критического мышления
Шрифт:
• Дать каждому человеку, испытывающему страх перед преступностью, успокоительные средства, чтобы снизить беспокойство (они больше не будут испытывать страха).
• Распространять информацию о том, что фактический уровень преступности крайне низок (это может быть либо правдой, либо ложью; в любом случае такое действие служит достижению этой цели – хотя ложь, естественно, является неэтичным приемом).
Цель № 5. Снизить число тяжелых преступлений. Эта цель также меняет наше восприятие преступности, так как касается снижения степени тяжести, а не количества преступлений, числа преступников и страха людей перед преступностью. Некоторые возможные решения.
• Запретить ношение оружия.
• Легализовать употребление наркотиков.
Можно по-новому сформулировать
Безусловно, некоторые из приведенных вариантов решения задачи смешны и нелепы – такие, например, как ссылка преступников в Сибирь или выдача каждому человеку успокоительных средств, другие – просто неэтичны. Идея этого примера заключалась в том, чтобы показать, как с помощью различного представления цели нечетко поставленной задачи выявляются новые точки зрения на нее. Вполне вероятно, что в данном случае необходимо принять комбинированное решение, и тогда главный страх Америки уменьшится. Попробуйте проделать такую операцию с другими сложными задачами. Не исключено, что, взглянув на задачу с разных точек зрения, вы будете удивлены, обнаружив множество неожиданных вариантов решений, возникающих при рассмотрении различных формулировок конечной цели.
Большинство программ, посвященных усовершенствованию навыков решения задач, делают основной упор на «планомерном подходе» (Covington, 1987). В настоящее время доступны многочисленные компьютерные программы, предлагающие планы решения задач. Компьютерный бум способствовал появлению большого количества новых программ, которые претендуют на повышение у пользователей на выков решения задач, однако большинство из этих программ настолько ново, что еще не накоплено достаточного объема данных, подтверждающих их эффективность.
Рис. 9.2. Совет детям, как разработать план решения задачи (Источник Covington, Crutchfield, Davies Olton, 1974, p 17)
Несмотря на то что планы решения задач могут отличаться друг от друга своей сложностью, большинство из них складывается из пяти основных шагов: а) осознание того, что задача действительно существует (Это важная стадия, которая часто служит признаком творчества – понятия, которому посвящена глава 10. Рассмотрим любые перемены – например, переход от использования извозчиков к моторизованным видам транспорта. В большинстве стран лошади работали без нареканий, и предложение заменить их сомнительным ящиком на колесах, который часто ломается и нуждается в постоянных заправках горючим, казалось в то время просто нелепым. Большинство людей без всяких проблем путешествовало на лошадях); б) -формулировка задачи, в которую включается определение исходного положения и окончательной цели; в) выработка и оценка возможных решений; г) выбор оптимального решения; д) реализация выбранного пути решения задачи с целью его проверки.
К сожалению, если цель не будет достигнута, все или почти все шаги придется повторить. Не исключено, что потребуется изменить формулировку цели, разработать дополнительные варианты решения и последовательно оценить каждый из них.
Брэнсфорд и Штейн (Bransford Stein, 1993) использовали слово-акроним ИДЕАЛ (IDEAL), чтобы обозначить эти пять стадий: / (Identify – идентификация или осознание задачи); D (Define – определение и представление задачи); Е (Explore – разработка возможных решений); A (Act – действие согласно выработанной стратегии); L (Look back – взгляд назад и оценка последствий действий).
Главной целью Программы продуктивного мышления (Covington, Crutchfield, Davies Olton, 1974) – одной из самых старых и наиболее популярных программ, целью которой было помочь ребенку «научиться думать», – являлось приобретение привычки планировать стратегию выработки решения. На рис. 9.2 показано несколько фрагментов из этой программы, в которой делался упор на необходимости соблюдения строгого порядка при решении задач.
Наилучший путь решения задачи – придумать наиболее удачное ее представление. Это заставляет человека, занятого поиском решения, четко определять желаемую цель и тщательно планировать каждый шаг достижения этой цели. Майер (Mayer, 1992) обнаружил, что наглядное визуальное представление помогает читателям при понимании сложного текста. Одним из принципов правильного мышления, который упоминается почти во всех главах, является использование системы разнообразного представления имеющейся информации – в виде диаграмм с текстовыми пояснениями или словесных описаний с рисунками.
Представление задачи хорошо демонстрирует степень ее понимания (Greeno, 1973,1992). Удачное представление имеющейся информации должно содержать всю имеющуюся релевантную информацию и выявлять связи между отдельными составляющими (правила и ограничения) – это значительно облегчит продвижение к цели. Правильное представление задачи – определяющий момент в процессе нахождения решения.
Рассматривая способы удачных представлений задачи, Ньюэл (Newell, 1983) отметил, что «необходимо пощекотать память» – эту фразу я очень часто употребляю, поскольку считаюгчто она отражает ключевой момент при рассмотрении процесса мышления. Это означает, что нужно задействовать все знания человека о решаемой задаче. Когда человек правильно сформулирует задачу и правильно ее представит, он, легко уловив имеющиеся связи, сразу же поймет, какая информация пропущена, а какая является противоречивой.
Попробуем показать это на примере:
Представьте в графическом виде и в виде алгебраической формулы высказывание «В этом университете студентов в шесть раз больше, чем профессоров»
Если вы похожи на большинство студентов колледжа, вы нарисуете подобную диаграмму:
Это соответствует формуле 6S = Р.
Если бы я назвала вам число студентов, то вы могли бы, используя эту формулу, определить количество профессоров, и наоборот. А вы заметили, что формула, выведенная из такого графического представления, содержит ошибку? Формула показывает, что профессоров больше, чем студентов – т. е. все наоборот! Причина, по которой многие студенты испытывают сложности при решении этой и подобных задач, лежит в неправильной интерпретации слов. Сочетание слов «студентов в шесть раз больше» сразу вызывает желание умножить число студентов на шесть. Майер нашел метод, как существенно повысить эффективность решения математических задач студентами колледжа всего лишь после трехчасового занятия, на котором их учили правильно графически представлять задачи (Lewis Mayer, 1987). Трудно переоценить значение правильного представления задачи при ее решении.
Следующие пункты содержат руководства по правильному представлению задач и демонстрируют тесную связь между представлением задачи и ее решением. Правильное представление сразу же выявляет характерные особенности задачи. Оно классифицирует информацию, размещая ее в пространстве и делая наглядной; кроме того, оно служит проверкой, насколько хорошо мы понимаем задачу.
Запишите задачу
Все задачи изначально представлены в вашей голове. Хорошо было бы выписать на бумагу пути решения задачи и ее цели или отобразить их в другой конкретной форме. Это снизит нагрузку на память и позволит вам ознакомиться с наглядным представлением задачи. Простейший пример помощи, которую могут оказать карандаш и бумага, это решение элементарной задачи на умножение. Попробуйте решить задачу, ничего не записывая: