Психология критического мышления
Шрифт:
976 х 893
Естественно, вы задумаетесь над этим пустяковым вопросом, поскольку он является простым, когда у вас под рукой карандаш и бумага, и сложным, требующим хорошей памяти, для вычисления в уме. Всегда, когда нужно сохранить в памяти ряд фактов или вариантов, полезно воспользоваться карандашом и бумагой.
Нарисуйте график или диаграмму
«Медведь, выйдя из точки Р, прошел одну милю на юг. Затем он изменил направление и прошел милю на восток. Потом он снова повернул налево и прошел одну милю на север, после чего оказался точно в том месте, откуда стартовал. Какого цвета был медведь?» (Polya, 1957, р. 234).
Задача кажется вам странной или даже неразрешимой? Если
Давайте рассмотрим еще одну задачу. Старый почтенный монах покидает свой монастырь ровно в 6 часов утра, чтобы взобраться по извилистой горной тропе на вершину и там уединиться. Он достигает вершины ровно в 4 часа вечера. Проведя на вершине ночь во сне и молитвах, он покидает вершину горы ровно в 6 часов утра и добирается до монастыря ровно в 4 часа вечера. Никаких ограничений на скорость монаха не накладывается. Известно, что по пути он несколько раз останавливается, чтобы отдохнуть. Спрашивается, существует ли на горной тропе такая точка, которую монах проходит в одно и то же время суток?
Остановитесь и подумайте некоторое время над этой задачей. Она вам кажется сложной? Есть два подхода, которые сделают ответ простым и очевидным, но прежде чем вы продолжите чтение, решите, какие шаги предприняли бы вы для отыскания решения, и попробуйте найти его. Как вы уже вероятно догадались, правильное представление задачи обеспечит успех в ее решении.
Одно из решений состоит в построении графиков подъема и спуска монаха. Графики могут иметь произвольную форму, поскольку мы ничего не знаем о характере движения монаха. Примеры графиков подъема и спуска приведены на рис. 9.3.
Теперь наложите эти графики друг на друга и посмотрите, пересекаются ли они в какой-нибудь точке. Если такая точка существует, то это означает, что в каждый из двух дней монах побывал в ней в одно и то же время. Это показано на рис. 9.4. Построение графика сделало решение наглядным. В действительности существует еще более простое решение этой задачи, если изменить ее формулировку и представить условие в эквивалентной, но несколько другой форме. Предположим, двое людей идут по одной и той же горной тропе в одно и то же время и в одно и то же утро. Если один из них вышел из монастыря, а другой с вершины горы, оба начали движение в 6 часов утра и пришли в конечный пункт своего маршрута в 4 часа вечера, то очевидно, что где-то на тропе они должны были обязательно встретиться, независимо от того, как часто каждый из них останавливался передохнуть или подумать. Таким образом, при изменении формулировки сложная задача может превратиться в тривиальную.
–
Рис. 9.3. Графики подъема и спуска монаха.
Графики имеют произвольную форму, поскольку монах мог отдыхать, когда хотел, – как при подъеме на вершину, так и при спуске с нее.
Рис. 9.4. Накладывая друг на друга графики подъема и спуска, легко можно увидеть, что обязательно должно быть место, где они пересекаются. Таким образом, должно существовать место на горной тропе, которое монах пересекал в каждый из дней в одно и то же время.
Графическое изображение нередко является отличной стратегией решения задач. Несколько лет назад я проводила лабораторный курс экспериментальной психологии. Заключался он в следующем: студентам требовалось выполнить эксперименты, собрать данные и, переосмыслив их, предложить свою интерпретацию. И хотя студенты изучали статистические методы, необходимые для такой работы, я заметила, что они добивались гораздо большего понимания исследуемой задачи, если представляли полученные ими результаты в виде графиков. Это помогало им формулировать выводы на базе экспериментальных данных, поскольку они лучше понимали природу этих данных. Студенты обнаружили, что простейший график оказался значительно более эффективным средством для понимания задачи, чем разработанные статистические процедуры, к которым они должны были прибегнуть.
Особенно полезны графики и различные виды диаграмм для понимания стратегии решения математических и других точных задач. Например, есть известная задача из начального курса статистики, когда требуется отыскать площадь фигуры, ограниченной отрезком «колоколообразной» кривой нормального распределения между двумя заданными точками. Для студентов это может показаться сложной и непонятной задачей, но если они начертят кривую и заштрихуют область, площадь которой надо отыскать, задача значительно упростится. Я не даю своим студентам математических формул для отыскания необходимых площадей. Студентам проще вывести их самим, ориентируясь на построенные графики и рисунки.
Давайте рассмотрим геометрическую задачу, предложенную Кёлером (Kohler, 1969). В вашем распоряжении есть только данные, приведенные на рис. 9.5, и известно, что радиус окружности равен 5 см. Сможете ли вы определить длину отрезка L?
Одна из причин сложности этой задачи – ее данное графическое представление, когда отрезок L оказывается гипотенузой двух прямоугольных треугольников:
Рис. 9.5. Пользуясь лишь той информацией, которая приведена на рисунке, попробуйте определить длину отрезка L. (Источник: Kohler, 1969) треугольника со сторонами X, Д L и треугольника, образованного пересечением с линией L двух взаимно перпендикулярных радиусов. Как изменить этот рисунок, чтобы решение стало наглядным?
Рис. 9.6. В качестве дополнительного построения для нахождения решения задачи (рис. 9.5) проведены радиусы. Можете ли вы теперь определить длину отрезка L?
Проанализируйте данную информацию. Поскольку единственным заданным на рисунке линейным размером является радиус окружности, то, вероятно, он потребуется для решения задачи. Попробуйте начертить дополнительные радиусы внутри окружности, как это показано на рис. 9.6. Может, это поможет вам предложить вариант решения?
Посмотрите внимательно на квадрант, содержащий отрезок L. Можете ли вы найти другой отрезок, равный по длине L? Если вы представите отрезок L как диагональ прямоугольника со сторонами X, D и необозначенными сторонами, являющимися отрезками горизонтального и вертикального радиусов, то другая диагональ этого прямоугольника должна равняться по длине L. В то же время другая диагональ является не чем иным, как радиусом; таким образом, длина отрезка L равна радиусу и тоже составляет 5 см. Хотя первоначальное представление задачи вводило в заблуждение, с помощью дополнительных построений решение найдено.