Пустыня Наска. Следы Иного Разума
Шрифт:
• Результаты магнитных измерений показали четкие различия между линиями и геоглифами по сравнению с нетронутым окружением.
• Геоэлектрические замеры с большой четкостью выявили неожиданные аномалии на глубине до 2 метров под геоглифами.
• Геологическая среда Пальпы — Наски характеризуется необычно высоким содержанием мышьяка в осадочных породах.
• В некоторых отвалах осыпей вокруг Пальпы был обнаружен белый материал, состоящий преимущественно из стекла. Происхождение этого материала выяснить не удалось.
Подобная экспедиция, к сожалению, редкость, исключение. Вместо привлечения специалистов естественных наук исследование перуанских геоглифов монополизировано историко-археологической формацией. Как расценивать
Нужны новые умы, новые непредвзятые подходы, новые современные методы и технологии для исследований. Вот поэтому и пытаюсь я убедить читателя раскрыть пошире глаза, очистить от шор свое сознание и взглянуть на феномен пустыни Наска с пристрастием пытливого всезнайки. Сосредоточьте свое внимание на снимках плато с воздуха еще и еще раз. Зрелище фантастическое! Лучи! Бесконечные, бесчисленные лучи отпечатались на грунте, не оставив бесформенных пятен от ног человека. Какие еще нужны доказательства, если достаточно одной такой фотографии, чтобы осознать нереальность рукотворности подобных геоглифов? Собранные мной доказательства, о которых говорилось в предыдущих главах (главы 4,5), скорее всего, не окончательный перечень симптомов такого "диагноза". И в то же время мне представляется, что эти аргументы — веская причина поискать смысл в следах Иного Разума, оставшихся на грунте плато Наска.
Поль Косок был первым, кто обнаружил астрономические ориентиры отдельных линий в пустыне и на этом основании сделал еще в 1947 году вывод: "…некий признак порядкабыл обнаружен в том, что казалось хаосом". А Мария Райхе обратила внимание на другую закономерность наземных фигур: на обилие однотипных геометрических комбинаций — кнутов и зигзагов, которые отличаются главным образом размерами. Это очень важные наблюдения Косока и Райхе, поскольку они дали нам надежду найти закономерности и выявить логику в этом кажущемся хаосе линий, полос, треугольников. По моей же гипотезе, как раз кнуты и зигзаги — доказательство случайных, неумышленных энергетических следов, а вот линии и центры несут информационную нагрузку.
Поэтому давайте еще раз вспомним некоторые особенности насканских фигур, которые свидетельствуют о той же математической логике, что и у пиктограмм на полях. И там, и там правильные геометрические построения. В Наске это идеальная прямолинейность, часто встречающаяся параллельность прямых, логарифмические спирали, синусоиды и другие зигзаги. А идеальное сопряжение кривых в рисунках животных, математическое программирование контуров рисунков относительно секущей прямой или относительно начального крючка? Почему и зачем столько застывшей математики на грунте пустыни? Причина это или следствие? И что такое, собственно говоря, математика?
Существует две точки зрения на математику как объективную реальность. Одна из них рассматривает математику как придуманные человеком формализованные представления о механизмах, законах природы. Другая точка зрения рассматривает математику как объективно существующую в природе, входящую во все ее механизмы и процессы, независимо от людей, от их сознания. Мне представляется ближе к истине взгляд Г.М. Идлиса на математику как "адекватный язык естества знания— науки о природе". Языкам математики с нами говорит сама природа.Красота же природы, а также и науки, и искусства, по словам академика А. Мигдала, "…определяется ощущением соразмерности и взаимосвязанности частей, образующих целое, и отражает гармонию окружающего мира… Красивое — это то, что радует глаз или разум". А вот что писал великий французский математик Анри Пуанкаре о красоте и гармонии: "Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать, жизнь не стоила бы того, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза… Я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом". Таким образом, гармония,которая ярко и наглядно проявляется в произведениях искусства, архитектуры, объектах окружающей природы, имеет скрытое количественное математическое выражение.
Я уже писала, что одно из первых и самых сильных впечатлений от насканских фигур вызвала у меня красота линии, описывающей контур паука. Все стало на свои места, когда в одном из интервью Мария Райхе рассказала, что поиски метрической единицы привели ее к неожиданному результату. Она установила, "…что ни одна кривая линия ни одного из рисунков не выполнена бездумно. Все они сопрягаются между собой и с прямыми линиями по строгим геометрическим законам". Мои первые ощущения красоты и гармонии были тем начальным импульсом, который привел к поискам математических закономерностей в рисунках и схемах линий на плато Наска.
Взгляните на ход кривых крайней, незамкнутой лапы паука на рисунке, на то место, где начинается и заканчивается рисунок, переходя в две параллельные прямые. Красота перехода напоминает изгиб хоккейной клюшки, профиль которой выполняется по определенным расчетам прочностных характеристик. Обратите внимание, что сопряжение внутренней и внешней линий лапки с прямыми выполнено разными по величине радиусами. Радиус сопряжения внутренней линии меньше, внешней больше. А причина в том, что, во-первых, внутренняя линия длиннее (так как ниже расположена прямая) и, во-вторых, она еще и изгибается, чтобы быть параллельной контуру соседней лапки. Поэтому-то угол сопряжения между и ней и прямой острее (соответственно, и радиус дуги сопрягающей кривой меньше), по сравнению с углом, который составляет внешняя линия лапы со своей прямой. Я описала подробно этот небольшой пример с целью показать, что каждая деталь рисунка, даже его начало и конец, выполнены абсолютно правильно математически. И это не случайность, а закономерность, которой подчинены все контуры изображений.
Учитывая математическую логику, можно заметить множество искажений, внесенных по незнанию художниками-ретушерами при подготовке иллюстраций фигур Наски. Например, по моему убеждению, на большинстве изображений небольшой, но очень красивой насканской птички колибри изгиб между второй и последней (от клюва) синусоидой снизу прорисован слишком глубоко внутрь. Это становится очевидным, если учесть, что математической гармонии подчинена не только сама линия контура, но и огибающие (касательные) синусоидальных элементов оперения, из которых визуально формируется туловище птицы.
Просмотрите другие рисунки птиц и животных: все они красивы в своем математическом совершенстве. Математическая логика построения использована виртуозно и одновременно с фантазией, что вносит разнообразие в формы изображений. Так, рисунок дерева создан из семи ветвей — по три с каждой стороны от ствола и одна смотрит вверх. По моим наблюдениям, все они имеют одинаковую конфигурацию, повторяются все изгибы и разветвления, только они как бы по-разному вытянуты, деформированы в различных направлениях. Как уже говорилось в предыдущих главах, различная вытянутость деталей одного рисунка в зависимости от направления, скорее всего, обусловлена проецированием под углом к поверхности. Мы подробно рассматривали это на рисунках кондора и ящерицы.