Путешествие к далеким мирам
Шрифт:
Зато гораздо больше трудности, с которыми связано это притяжение в тех случаях, когда нужно обеспечить плавную посадку межпланетного корабля, на Луну. Чтобы корабль не разбился при посадке, его нужно затормозить таким образом, чтобы к моменту встречи с поверхностью Луны скорость корабля равнялась нулю. В этом случае недопустима даже та небольшая скорость, с которой совершает посадку самолет на аэродроме, — ведь на Луне-то посадочных площадок нет!
Так как Луна не обладает атмосферой, то торможение может быть достигнуто только с помощью двигателя самого корабля. Для этого либо корабль должен повернуться на 180°, кормой к Луне, либо спереди на нем должны быть установлены специальные двигатели для торможения. Так или иначе, реактивная тяга двигателя должна быть в этом случае направлена в сторону, обратную направлению полета, и постепенно уменьшать его скорость. Такое торможение двигателем было предложено Циолковским. Затрата энергии топлива
Если мы имеем в виду полет на Луну с последующим возвращением на Землю, то это же влияние поля тяготения Луны скажется второй раз при отрыве от нее. Снова придется сообщать кораблю скорость 2 1/3 километра в секунду, чтобы он достиг точки, с которой может начаться его падение на Землю.
Теперь мы можем примерно оценить полную величину идеальной скорости, по которой должен быть определен минимальный запас топлива на межпланетном корабле, совершающем полет на Луну и обратно:
Начальная скорость при взлете с Земли | 11,5 километра в секунду |
Торможение при посадке на Луну | 2,3 " |
Взлет с Луны | 2,3 " |
Всего | 16,1 километра в секунду |
Однако в действительности запас топлива на корабле должен быть гораздо больше этого минимального.
Прежде всего, скорость корабля у нейтральной точки не должна равняться нулю, при этом затрата топлива будет минимальной, но зато чрезмерно возрастет длительность полета. Так, например, если скорость корабля на высоте 1600 километров будет равна 9,9 километра в секунду, то корабль пересечет нейтральную точку со скоростью, близкой к нулю. [70] Если же увеличить скорость при взлете всего на 100 метров в секунду, то есть довести ее до 10 километров в секунду, то скорость корабля в нейтральной точке будет равна примерно 1,4 километра в секунду, а общая продолжительность полета сократится при этом вдвое — со 100 до 50 часов. Вероятно, скорость в нейтральной точке будет близка к 1 километру в секунду. Но это значит, что должны быть увеличены начальная скорость при взлете корабля с Земли, затрата энергии на торможение при посадке на Луну и начальная скорость при взлете с Луны. Общее увеличение идеальной скорости при этом можно оценить примерно в 1,5 километра в секунду. Если учесть еще неизбежные потери скорости в полете, а также необходимый резерв топлива на корабле для компенсации ошибок управления и проч., то величина идеальной скорости получается не меньше 20 километров в секунду. [71]
70
На рисунке (стр. 163) для простоты рассматривается полет по прямой, соединяющей центры Земли и Луны (подобно рисунку на стр. 160), и движение Луны по орбите не учитывается.
71
Более осторожная оценка, учитывающая, в частности, и торможение двигателем при посадке на Землю, дает даже б'oльшую величину идеальной скорости, равную примерно 25 километрам в секунду. Иногда называют и еще б'oльшие величины — порядка 30–32 километров в секунду.
При скорости истечения газов из двигателя 3 километра в секунду формула Циолковского дает в этом случае для отношения начальной и конечной масс корабля величину около 800. Это соотношение является практически неосуществимым, и поэтому совершить такой полет на Луну при современном уровне развития реактивной техники невозможно. Увеличение скорости истечения до 4 километров в секунду, вполне возможное в будущем, уменьшило бы потребное соотношение масс корабля до 150, что уже принципиально может быть осуществлено с помощью многоступенчатого поезда, но его вес при взлете с Земли даже с ничтожной полезной нагрузкой составлял бы десятки тысяч тонн, то есть равнялся бы весу гигантских океанских теплоходов. Вот какое пагубное влияние оказывает массивность спутника Земли, если мы хотим совершить посадку на него. Поэтому «взятие» Луны таким прямым штурмом, лобовой атакой, вряд ли удастся. Здесь будет уместнее планомерная осада, тщательная подготовка к решающему штурму.
Конечно, уже сейчас возможна посылка
72
Чтобы исключить всякую возможность «прозевать» момент столкновения ракеты с Луной, например из-за облачности, а также с целью создания постоянного указателя места падения ракеты, будет целесообразно наряду с порохом снабдить ракету зарядом гипса или толченого стекла. Белое пятно, которое будет образовано таким образом на темной поверхности Луны, будет всегда отлично видно с Земли.
Одним из этапов подготовки к полету на Луну будет, несомненно, облет Луны межпланетным кораблем на сравнительно небольшом расстоянии от нее, сначала опять-таки без людей, а затем и с людьми. Такой полет имел бы разностороннее значение и, в частности, позволил бы наконец заглянуть на недоступную нам до сих пор «заднюю» сторону Луны, которая никогда не видна с Земли. Для совершения облета придется затратить лишь немногим большую энергию, чем для простого полета к лунной орбите. Идеальная скорость в этом случае (без учета посадки на Землю) равнялась бы 13–14 километрам в секунду, что при современном значении скорости истечения около 3 километров в секунду может быть достигнуто с помощью поезда из 3–4 ракет.
Полет автоматической ракеты на Луну или вокруг Луны уже вполне под силу современной технике. В частности, эта задача может быть решена и с помощью ракеты, послужившей для запуска советских искусственных спутников Земли. Что же говорить о советской космической ракете, пролетевшей в непосредственной близости от Луны и превратившейся в искусственную планету? Эта ракета обладала даже избыточной скоростью по сравнению с необходимой для облета Луны, а ведь она несла огромный полезный груз… В общем, односторонний полет на Луну уже не представляет никаких неразрешимых проблем.
Иное дело — полет на Луну людей с возвратом на Землю. Эта задача непосильна для современной науки и техники. Решить ее помогут искусственные спутники Земли.
Уже на примере полета на Луну можно видеть все значение искусственных спутников Земли для межпланетных сообщений, если использовать эти спутники для заправки топливом межпланетных кораблей.
Пусть, например, на высоте 500 километров над Землей создана заправочная станция — топливохранилище, мчащееся вокруг Земли по круговой или слегка эллиптической орбите со скоростью 7,6–7,7 километра в секунду. В цистернах этого хранилища могут быть постепенно накоплены сотни и тысячи тонн топлива, перебрасываемого с помощью грузовых ракет-«танкеров» с Земли.
Межпланетный корабль Москва — Луна подлетает к заправочной станции и выравнивает свою скорость со скоростью этого искусственного спутника. Теперь они мчатся рядом вокруг Земли. Для разработки техники заправки топливом в мировом пространстве можно использовать значительный опыт, накопленный авиацией по заправке в полете реактивных самолетов топливом с летающих «танкеров» — тяжелых и более тихоходных самолетов. Уже сейчас имеются случаи, когда небольшие быстроходные реактивные самолеты при совершении дальних перелетов пополняют таким образом свои баки в полете, и даже не раз и не два. Для этого им приходится лишь несколько снизить скорость своего полета до скорости «танкера», то есть самолета-заправщика.
В самое последнее время в авиации достигнуты особенно большие успехи в отношении совершенствования заправки топливом в полете. Теперь уже с одного заправщика могут одновременно заправляться сразу несколько самолетов. С успехом осуществляется также заправка в полете и тяжелых самолетов. Именно это позволило осуществить кругосветный беспосадочный перелет трех американских самолетов в январе 1957 года. Эти восьмимоторные реактивные самолеты покрыли расстояние чуть больше 39 100 километров примерно за 45 летных часов, летя со средней скоростью 850 километров в час; для этого им пришлось несколько раз заправляться топливом в воздухе.