Путешествие к далеким мирам
Шрифт:
III. СКОРОСТЬ ОТРЫВА (ПАРАБОЛИЧЕСКАЯ СКОРОСТЬ)
Скорость отрыва (или параболическая скорость) есть та скорость, которая должна быть сообщена телу у поверхности Земли, чтобы полностью преодолеть поле земного тяготения — удалить тело в бесконечность.
Величина скорости отрыва V отр. определяется тем, что кинетическая энергия тела должна в этом случае в точности равняться работе преодоления поля тяготения; с помощью высшей математики получаем:
то есть работа полного преодоления поля земного
Так как g 0R есть круговая скорость, то скорость отрыва V отp. в 1,41 раза больше круговой скорости:
Высота Н в км | Скорость отрыва У отр. в км/сек |
---|---|
0 | 11,2 |
300 | 10,9 |
1 000 | 10,4 |
1 670 | 9,9 |
35 800 | 4,3 |
384 000 | 1,42 |
IV. ОБЩИЙ ЗАКОН ДВИЖЕНИЯ КОСМИЧЕСКОГО КОРАБЛЯ В ПОЛЕ ТЯГОТЕНИЯ ОДНОГО НЕБЕСНОГО ТЕЛА
Примеры движения по кругу или по параболе, о которых шла речь выше, являются лишь частными случаями движения тела в поле тяготения небесного тела большой массы. Как известно из небесной механики, в общем случае орбитой такого движения является одна из кривых второго порядка (так называемых конических сечений): круг, эллипс, парабола или гипербола. Общий закон этого движения дается следующей формулой (так называемое уравнение живых сил, упрощенное для случая космического корабля, то есть тела небольшой массы):
или где V— скорость движения тела массы пренебрежимо малой по сравнению с М;
М— масса небесного тела;
f — гравитационная постоянная;
L— расстояние до центра тяжести небесного тела;
а— большая полуось орбиты;
g 0 — ускорение силы тяжести на поверхности небесного тела на расстоянии R 0 от его центра.
Как видно из формул, характер орбиты зависит лишь от величины, но не направления скорости V. Различные типы орбит соответствуют следующим частным случаям:
а) а = ,
орбита — парабола;
б) а > , V < V параб.,
в) L = а, V = V круг =
частный случай эллиптической орбиты — круговая;
г) а < , V> V параб., орбита — гипербола (V гиперб.).
По какой орбите будет двигаться космический корабль, летящий на расстоянии 100 000 км от центра Земли со скоростью 5 км/сек?
По формуле откуда a — 24 000;
так как а < , то V = V гиперб., орбита — гипербола.
V. ЭЛЛИПТИЧЕСКИЕ ОРБИТЫ
Наиболее важными для астронавтики являются эллиптические орбиты, по которым будут двигаться не только все новые искусственные спутники Земли, но чаще всего и космические корабли. Полет по гиперболической орбите — дело более отдаленного будущего (советская космическая ракета, запущенная 2 января 1959 года, летела в поле земного тяготения по гиперболе, а вокруг Солнца движется по эллипсу).
Формулы расчета эллиптических орбит могут быть получены из приведенного выше уравнения живых сил путем упрощений;
для движения вокруг Солнца:
где V— в км/сек,
L,a— в астрономических единицах (1 а. е. — расстояние от Земли до Солнца, равное примерно 150·10 6 км);
для движения вокруг Земли:
где V— в км/сек,
L, а— в радиусах земного шара.
1. Какова должна быть скорость корабля при взлете с Земли для того, чтобы он смог совершить полет на Меркурий по наивыгоднейшей, то есть касательной, эллиптической орбите?
В этом случае
и
Так как круговая скорость Земли равна 29,8 км/сек, то, очевидно, кораблю при взлете нужно сообщить скорость против направления движения Земли по орбите, равную 29,8 — 22,3 = 7,5 км/сек.