Чтение онлайн

на главную

Жанры

Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:

В уравнении второго закона Ньютона говорится, как найти ускорение тела. Однако узнав ускорение, мы можем получить гораздо больше информации. Ускорение — это изменение скорости за единицу времени, так что если мы знаем ускорение, то мы знаем и скорость. Далее, скорость говорит нам, как сильно меняется положение тела за некоторый промежуток времени, так что если мы знаем скорость, мы можем определить положение.

Таким образом, если мы решим уравнение второго закона Ньютона, то можем выяснить, в какой точке находится и с какой скоростью движется тело в каждый момент времени. И эти огромные возможности скрыты в короткой формуле.

* * *

РЕШАЯ УРАВНЕНИЯ НЬЮТОНА

Уравнения Ньютона

относительно просто решить при постоянном ускорении тела. Представим себе монету, падающую с Эйфелевой башни, высота которой составляет около 300 м. Мы знаем, что ее ускорение равно ускорению свободного падения, то есть 9,81 м/с2 (для упрощения расчетов округлим до 10 м/с2). Это означает, что монета каждую секунду движется на 10 м/с быстрее. Исходя из этой информации, мы можем вычислить, какова ее скорость в любой момент. Если исходное состояние — покой, то через секунду ее скорость будет 10 м/с; через две — 20 м/с; через десять — 100 м/с.

Узнав скорость, мы можем вычислить расстояние, которое монета прошла за время своего падения. Например, мы можем определить путь, пройденный за первые две секунды. Поскольку исходная скорость монеты равна нулю (монета не двигалась), а конечная — 20 м/с, монета перемещалась со средней скоростью 10 м/с. И поскольку она падала в течение двух секунд, пройденное расстояние равно 20 м. Выполняя одну и ту же операцию для различных временных интервалов, мы можем выразить высоту относительно времени в таблице.

Также мы можем построить график, в котором видно положение монеты в каждый момент времени.

* * *

Преодолевая законы Ньютона

Несмотря на всю свою важность, законы Ньютона оказались малоприменимы к некоторым типам задач. Но чтобы понять причину этого, нам нужно обратиться к такому понятию, как координаты.

Большинству людей знаком, как минимум, один тип координат: долгота и широта. Зная эти числа, мы можем ориентироваться по карте. Координаты частицы — это группа чисел, позволяющих определить ее положение. Наиболее распространена прямоугольная система координат х и у (названа так Декартом, который эту систему и ввел).

Как видите, если известна координата х (горизонтальное положение) и у (вертикальное положение), можно определить положение частицы на рисунке. Если бы мы говорили о частице в трех измерениях, нам потребовалось бы еще одно число для выражения глубины, или координата z. Если предположить, что газ находится в закрытой коробке, то для уточнения его состояния нужно знать положение каждой его частицы, то есть все три ее координаты. Если учесть, что число частиц в коробке, наполненной воздухом, около 1023, то есть двадцать три нуля после единицы, несложно догадаться, что сделать нечто подобное является слишком сложной задачей.

Координаты х и у подходят для того, чтобы представить, например, машину, движущуюся по прямой. В этом случае, если выбрать у в качестве высоты, видно, что вертикальное положение машины всегда одно и то же, а горизонтальное с течением времени

меняется. Описывать движение машины в прямоугольной системе координат просто: пройденное расстояние — это скорость, умноженная на время. Итак, если мы едем со скоростью 100 километров в час в течение трех часов, то проедем 300 километров.

Однако прямоугольная система координат не подходит для описания кругового движения (см. рисунок).

Если сосредоточиться на горизонтальном положении частицы, можно увидеть, что она движется справа налево и слева направо зигзагом. То же происходит и с вертикальным положением: если смотреть на частицу сбоку, кажется, что она движется сверху вниз, как показано на графике.

Такое простое движение, как круговое, имеет очень сложное выражение в прямоугольной системе координат.

В этом случае для указания положения на плоскости используются полярные координаты. С их помощью можно показать расстояние до центра и угол относительно горизонтальной оси, как показано на рисунке.

Координата постоянна, так как расстояние до центра никогда не меняется; координата увеличивается с течением времени, по мере вращения частицы. Как видите, смена системы координат значительно облегчает нашу задачу.

Физики вскоре поняли, что для решения сложных задач законам Ньютона недостает гибкости. Нужно было найти новую формулировку этих законов, которая подходила бы для любой системы координат и для любого числа частиц. Жозефу Луи Лагранжу и Уильяму Роуэну Гамильтону удалось переформулировать законы классической механики и привести их к современному виду. Результаты их работы используются для описания самых современных теорий в физике частиц, начиная с квантовой механики и кончая теорией струн.

Принцип наименьшего действия

Гамильтон потратил на переформулирование законов Ньютона довольно много времени. Важным шагом при этом было использование понятия энергии, не включенного в уравнения Ньютона.

Первым предложил нечто похожее на идею энергии Готфрид Лейбниц (1646–1716), который оспаривал с Ньютоном первенство изобретения анализа бесконечно малых — математического инструмента, позволявшего работать с бесконечно малыми числами. Лейбниц обнаружил, что при описании некоторых типов движения используется математическая величина, которая остается постоянной, vis viva, или живая сила. Ученый открыл, что эта сила пропорциональна массе и квадрату скорости. Лейбниц доказал, что для некоторого типа столкновений частиц общая живая сила остается постоянной.

С течением времени понятие живой силы трансформировалось в понятие энергии. Сегодня при описании движения тела говорят о его кинетической энергии. Выражение кинетической энергии практически идентично выражению живой силы: ее значение равно половине последней. Если мы обозначим через Т кинетическую энергию, через m — массу и через v — скорость, кинетическая энергия частицы равна:

T = m·v2/2

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Горничная для тирана

Шагаева Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Горничная для тирана

Купидон с топором

Юнина Наталья
Любовные романы:
современные любовные романы
7.67
рейтинг книги
Купидон с топором

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Мимик нового Мира 12

Северный Лис
11. Мимик!
Любовные романы:
эро литература
5.00
рейтинг книги
Мимик нового Мира 12

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Рождение победителя

Каменистый Артем
3. Девятый
Фантастика:
фэнтези
альтернативная история
9.07
рейтинг книги
Рождение победителя