Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
В уравнении второго закона Ньютона говорится, как найти ускорение тела. Однако узнав ускорение, мы можем получить гораздо больше информации. Ускорение — это изменение скорости за единицу времени, так что если мы знаем ускорение, то мы знаем и скорость. Далее, скорость говорит нам, как сильно меняется положение тела за некоторый промежуток времени, так что если мы знаем скорость, мы можем определить положение.
Таким образом, если мы решим уравнение второго закона Ньютона, то можем выяснить, в какой точке находится и с какой скоростью движется тело в каждый момент времени. И эти огромные возможности скрыты в короткой формуле.
* * *
РЕШАЯ УРАВНЕНИЯ НЬЮТОНА
Уравнения Ньютона
Узнав скорость, мы можем вычислить расстояние, которое монета прошла за время своего падения. Например, мы можем определить путь, пройденный за первые две секунды. Поскольку исходная скорость монеты равна нулю (монета не двигалась), а конечная — 20 м/с, монета перемещалась со средней скоростью 10 м/с. И поскольку она падала в течение двух секунд, пройденное расстояние равно 20 м. Выполняя одну и ту же операцию для различных временных интервалов, мы можем выразить высоту относительно времени в таблице.
Также мы можем построить график, в котором видно положение монеты в каждый момент времени.
* * *
Несмотря на всю свою важность, законы Ньютона оказались малоприменимы к некоторым типам задач. Но чтобы понять причину этого, нам нужно обратиться к такому понятию, как координаты.
Большинству людей знаком, как минимум, один тип координат: долгота и широта. Зная эти числа, мы можем ориентироваться по карте. Координаты частицы — это группа чисел, позволяющих определить ее положение. Наиболее распространена прямоугольная система координат х и у (названа так Декартом, который эту систему и ввел).
Как видите, если известна координата х (горизонтальное положение) и у (вертикальное положение), можно определить положение частицы на рисунке. Если бы мы говорили о частице в трех измерениях, нам потребовалось бы еще одно число для выражения глубины, или координата z. Если предположить, что газ находится в закрытой коробке, то для уточнения его состояния нужно знать положение каждой его частицы, то есть все три ее координаты. Если учесть, что число частиц в коробке, наполненной воздухом, около 1023, то есть двадцать три нуля после единицы, несложно догадаться, что сделать нечто подобное является слишком сложной задачей.
Координаты х и у подходят для того, чтобы представить, например, машину, движущуюся по прямой. В этом случае, если выбрать у в качестве высоты, видно, что вертикальное положение машины всегда одно и то же, а горизонтальное с течением времени
Однако прямоугольная система координат не подходит для описания кругового движения (см. рисунок).
Если сосредоточиться на горизонтальном положении частицы, можно увидеть, что она движется справа налево и слева направо зигзагом. То же происходит и с вертикальным положением: если смотреть на частицу сбоку, кажется, что она движется сверху вниз, как показано на графике.
Такое простое движение, как круговое, имеет очень сложное выражение в прямоугольной системе координат.
В этом случае для указания положения на плоскости используются полярные координаты. С их помощью можно показать расстояние до центра и угол относительно горизонтальной оси, как показано на рисунке.
Координата r постоянна, так как расстояние до центра никогда не меняется; координата увеличивается с течением времени, по мере вращения частицы. Как видите, смена системы координат значительно облегчает нашу задачу.
Физики вскоре поняли, что для решения сложных задач законам Ньютона недостает гибкости. Нужно было найти новую формулировку этих законов, которая подходила бы для любой системы координат и для любого числа частиц. Жозефу Луи Лагранжу и Уильяму Роуэну Гамильтону удалось переформулировать законы классической механики и привести их к современному виду. Результаты их работы используются для описания самых современных теорий в физике частиц, начиная с квантовой механики и кончая теорией струн.
Гамильтон потратил на переформулирование законов Ньютона довольно много времени. Важным шагом при этом было использование понятия энергии, не включенного в уравнения Ньютона.
Первым предложил нечто похожее на идею энергии Готфрид Лейбниц (1646–1716), который оспаривал с Ньютоном первенство изобретения анализа бесконечно малых — математического инструмента, позволявшего работать с бесконечно малыми числами. Лейбниц обнаружил, что при описании некоторых типов движения используется математическая величина, которая остается постоянной, vis viva, или живая сила. Ученый открыл, что эта сила пропорциональна массе и квадрату скорости. Лейбниц доказал, что для некоторого типа столкновений частиц общая живая сила остается постоянной.
С течением времени понятие живой силы трансформировалось в понятие энергии. Сегодня при описании движения тела говорят о его кинетической энергии. Выражение кинетической энергии практически идентично выражению живой силы: ее значение равно половине последней. Если мы обозначим через Т кинетическую энергию, через m — массу и через v — скорость, кинетическая энергия частицы равна:
T = m·v2/2