Чтение онлайн

на главную - закладки

Жанры

Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Что такое измерение

Обычно говорят, что пространство, в котором мы живем, имеет три измерения, то есть объекты в нем обладают некоторой глубиной, хотя в математической модели этот тезис формулируется намного точнее.

Понятие измерения связано с понятием координаты. Вспомним, что координаты — это группа чисел, которые позволяют определить положение тела. Долгота и широта, например, показывают нам, как найти объект на поверхности Земли.

С математической точки зрения число измерений — это количество координат, необходимое для определения положения тела.

Самый простой случай — это прямая, которую математики обычно называют числовой прямой,

поскольку она образована из действительных чисел, то есть всех целых чисел, таких как 1, 2, 3 или —5; дробей, таких как 3/4, и иррациональных чисел, таких как квадратный корень из двух или число .

* * *

РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ ЧИСЛА

В античности считали, что любое число можно выразить в виде частного; то есть что для любого числа а должны быть два таких натуральных числа р и q, что:

a = p/q

Однако пифагореец Гиппас из Метапонта открыл, что это не так. Например, квадратный корень из двух нельзя выразить в виде частного двух натуральных чисел. Пифагорейцы назвали такие числа иррациональными и, как гласит легенда, даже пытались скрыть от мира само их существование, отправив Гиппаса в изгнание.

Сегодня иррациональные числа вполне привычны, узнать их можно по десятичной записи: в ней такие числа имеют бесконечное число знаков после запятой с непериодичной последовательностью.

Рациональные и иррациональные числа называют действительными и связывают их с положением точки в ее измерении.

* * *

Представим, что числовая прямая — это бесконечно длинная проволока, по которой ползет муравей. Если мы возьмем любую точку и обозначим ее как 0, мы сможем определить положение муравья, сказав, за сколько метров от нее он находится. Ноль обычно называют началом координат. Поскольку для определения положения муравья нам необходимо только одно число, говорят, что проволока — это одномерное пространство.

На практике для указания положения нужно больше чисел. Например, чтобы определить на GPS-карте местоположение нашего автомобиля, нужно два числа: горизонтальное и вертикальное положение на экране. Значит, карта — двумерное пространство, поскольку для определения положения частицы на ней необходимы две координаты.

Теперь мы легко понимаем, как определить положение объекта в трехмерном пространстве — для этого нам нужно не меньше чем три числа: одно — для определения высоты тела и два — для определения его положения на плоскости.

Положение частицы может быть представлено группой чисел. Рассмотрим случай частицы на плоскости.

Ее положение задано двумя точками: 5 для горизонтального положения и 7 — для вертикального. Если обозначить положение частицы через r, можно записать:

r = (5, 7).

В случае с тремя измерениями положение задано тремя числами, например:

r = (5, 7, 9),

где последнее число показывает нам глубину.

Многомерные системы

Как только мы представили каждое измерение в виде обычного числа, переход к многомерным системам упрощается: надо только продолжать добавлять числа, одно за другим. Положение точки в десятимерном пространстве задано десятью числами:

= (5, 7, 9, 2, 3, 6, 4, 1, 3, 3).

Но как выглядит положение в десяти измерениях? Все понимают, что значит положение на плоскости, но очень сложно и даже невозможно представить пространство из пяти и более измерений. И какой смысл в том, чтобы анализировать пространства, имеющие больше трех измерений?

Великий потенциал

математики состоит в том, что эта наука способна описывать объекты, которые невозможно представить. Если удается обнаружить ряд правил, работающих для одного, двух и трех измерений, их можно распространить на произвольное количество последних. Использование этих правил не требует какого-либо наглядного представления, а с его помощью можно описать свойства абсолютно новых геометрических объектов. Со временем оказалось, что многие из этих геометрических объектов, находящихся в стороне от повседневного опыта, имеют огромное значение при изучении действительности. Кажется, что математики способны, основываясь на абстрактных рассуждениях, раскрыть тайны Вселенной до того, как на них обратят внимание естественные науки.

Для того чтобы получить представление о типе отношений, которые могут выводиться для любого измерения, лучше всего подходит понятие длины, например длины стрелки.

Начнем с одномерного пространства. Предположим, что мы хотим найти длину этой стрелки.

Для этого вычитаем точку, где стрелка начинается, из точки, где она заканчивается, то есть ее длина равна 10 — 0 = 10 единиц.

В двумерном пространстве найти длину сложнее.

Как можно заметить, невозможно вычислить длину, просто глядя на график.

Нам потребуется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов катетов, то есть если — гипотенуза, а и Ь — катеты, то:

h2 = a + Ь2.

Таким образом, длина гипотенузы равна квадратному корню суммы квадратов катетов:

Поскольку отрезок образует треугольник с горизонтальными и вертикальными осями, нам нужно только заменить стороны а и b числами 3 и 4 соответственно, длину стрелки обозначим через l:

Теперь рассмотрим трехмерное пространство.

Горизонтальная проекция образует прямоугольный треугольник.

В этом случае длину можно найти в два этапа. Мы видим, что отрезок снова образует треугольник, в котором мы знаем высоту (она равна семи единицам), но не основание. Чтобы найти основание, нужно понять, что оно также является гипотенузой прямоугольного треугольника со сторонами три и четыре, как показано на рисунке. Обозначив основание через h, имеем:

h2a2 + b2 = 32 + 42 = 25.

Поделиться:
Популярные книги

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина