Чтение онлайн

на главную

Жанры

Ракеты и полеты в космос

Лей Вилли

Шрифт:

Рис. 8. Механизм для изготовления пороховых ракет. Картонная трубка насаживалась на «шип», а затем пороховой заряд набивался деревянным молотком в трубку вокруг «шипа». В больших ракетах на эту трубку во время набивания пороха надевалась металлическая труба, не допускавшая случайного разрыва картонной трубки

Готовая ракета, как описывает Шмидлап, привязывалась к шесту, который должен был быть приблизительно в семь раз длиннее самой ракеты. После этого ракета уравновешивалась на пальце или на спинке лезвия ножа.

смещенного чуть ниже сопла. Если имелся баланс, значит шест был выбран правильно; если же шест перевешивал, его следовало подрезать до тех пор, пока не наступало равновесие. Подобное «испытание» проводится и в настоящее время при ручном производстве ракет.

Среди разработок Шмидлапа можно найти и первые составные, или, как их теперь называют, многоступенчатые ракеты. На одном из его рисунков изображена большая ракета, несущая небольшую другую, в передней части которой находится еще меньшая ракета. Сейчас многоступенчатые ракеты служат для достижения больших высот или дальностей, однако у Шмидлапа они использовались просто с целью получения интересного зрелища.

Теперь, по моему мнению, следует объяснить, как действует ракета. Изготовляя ракету, ни китайцы, ни арабы, ни даже позднее жившие ремесленники не понимали смысла того, что делали. Они знали только, что если не сделать «горловины» и не «набивать порох деревянным молотком», то ракета не будет работать.

Не вызывало сомнений, что при сгорании пороха создается сильная струя газов. В 1540 году итальянец Ваноччо Бирингуччо объяснил довольно подробно, как создается эта струя, но его объяснение было весьма наивным и отнюдь не исчерпывающим. Прошло еще полтора столетия, прежде чем Ньютон открыл закон, объяснявший, почему происходит подъем ракеты. Но, чтобы понять суть реактивного движения, не обязательно знать Третий закон движения Ньютона. Ведь пока сосуд, содержащий сжатый газ, не имеет отверстий или утечки, ничего не произойдет. Газ будет равномерно давить на стенки этого контейнера — сосуда. Если же в стенке контейнера проделать отверстие, то картина изменится. Предположим, что это отверстие появится внезапно в дне сосуда. В этом случае газ всё еще будет давить на его стенки и верхнюю часть, но не встретит сопротивления в нижней части сосуда. В результате сила давления, направленная вверх, не будет уравновешена, и сосуд начнет подниматься (рис. 9).

Рис. 9. Предполагаемый вид паровой ракеты Перкинса

Если отклониться от хронологической последовательности в изложении материала, можно найти прекрасную иллюстрацию этого принципа в «паровых ракетах», на которые 15 мая 1824 года получил патент Джеймс Перкинс из Лондона. Ракета Перкинса состояла из металлического резервуара, частично наполненного водой. Круглое отверстие в его дне закрывалось легкоплавкой металлической пробкой. Весь резервуар устанавливался над пылающим костром. Вскоре тепло превращало воду в пар, давление которого непрерывно нарастало до тех пор, пока не расплавлялась пробка. Тогда пар начинал с огромной силой выходить наружу, и ракета взлетала в небо. Неизвестно, Для какой цели строил Перкинс свои «паровые ракеты», но можно быть благодарным ему за то, что он так просто и наглядно показал принцип реактивного движения.

Теперь можно перейти и к объяснению Третьего закона движения, который гласит, что всякое действие сопровождается равной, но противоположно направленной реакцией. Поясним это положение следующим простейшим примером: представьте себе лягушку, сидящую на куске дерева, который плавает по тихому озеру. Лягушка весит 1 унцию (28,3 г), столько же весит кусок дерева, поэтому ничего особенного не происходит до тех пор, пока лягушка ие замечает на некотором удалении от себя муху. Она сильно подпрыгивает, стремясь достать муху, но в то же время кусок дерева отходит в другом направлении, противоположном направлению прыжка лягушки. Предположим, что

в данном случае отсутствует сопротивление воды, тогда дерево отойдет от первоначальной точки на такое же расстояние, что и лягушка. Если лягушка, отталкиваясь от куска дерева, пролетит по воздуху расстояние в 1,2 м , то и кусок дерева передвинется на 1,2 м, но в противоположном направлении, причем оба тела, имея равные массы, будут двигаться с одинаковой скоростью (рис. 10).

Рис. 10. Третий закон движения

В этом примере лягушка свободно заменяется ракетой, а кусок дерева — пороховыми газами. Газы при истечении из сопла ракеты отбрасывают ее в противоположном направлении, и это происходит не только в воздухе, но и в безвоздушном пространстве; это явление не имеет никакого отношения к «отталкиванию от воздуха».

Именно сила реакции отбрасывает ствол орудия назад, когда снаряд и струя мгновенно и бурно расширяющихся пороховых газов вылетают из него. Именно эта сила опрокидывает стул, когда кошка прыгает с его спинки на книжную полку, или отталкивает вашу лодку обратно в реку, когда вы прыгаете с нее на берег.

Теперь нужно сказать о том, что масса, создающая реактивную силу, которую мы хотим использовать для движения, должна складываться из очень большого количества частиц с небольшой массой. В примере с лягушкой вся система была разделена пополам, в результате каждая половинка приобрела половину скорости. Если бы на нашем куске дерева сидело несколько маленьких лягушек, окончательный результат был бы лучшим: та же самая скорость была бы достигнута при затрате меньших «рабочих масс». Если вам нужна система для получения полной заданной скорости «истечения», можно всякий раз выбрасывать по половине, по четверти и даже по меньшей доле первоначальной массы.

Обозначим остающуюся массу через i, тогда весь вопрос будет заключаться в том, какой должна быть первоначальная масса. Ответ на этот вопрос дается в следующей таблице:

Понятно, что масса молекулы газа, выбрасываемого настоящей ракетой, гораздо меньше тысячной доли первоначальной массы ракеты. Следовательно, в приведенной таблице придется сделать еще одну строчку для «бесконечно малых» частиц, для которых первоначальная масса окажется равной 2,7182. Это число хорошо известно математикам, обозначающим его буквой «е».

Подводя итог сказанному выше, можно сделать четыре следующих вывода:

1. Движение ракеты не обусловлено отталкиванием от окружающей среды; в действительности последняя только создает сопротивление движению как самой ракеты, так и газов, истекающих из сопла. Поэтому, чем меньшую плотность имеет окружающая среда, тем больше коэффициент полезного действия ракеты. Самым выгодным условием для движения ракеты является полное отсутствие окружающей среды, то есть вакуум.

2. Продукты сгорания ракеты должны состоять из возможно более мелких частиц; обычно так оно и бывает, ибо эти продукты, как правило, являются газообразными.

3. Скорость ракеты можно повысить либо путем увеличения массы истекающих продуктов сгорания, либо путем повышения скорости их истечения, причем последнее всегда остается более предпочтительным.

4. Скорость ракеты может превысить скорость истечения продуктов сгорания. Скорость ракеты ограничивается, помимо внешнего сопротивления, только общей массой топлива.

Все эти положения фактически составляют то, что мы называем Третьим законом движения. Практическое его значение заключается в том, что движение ракеты зависит не от какого-то «таинственного» качества пороха, а единственно от создания определенной массы продуктов сгорания любого типа каким-либо приемлемым способом. А это означало, что таким способом можно приводить в движение летательный аппарат.

Поделиться:
Популярные книги

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3