Чтение онлайн

на главную

Жанры

Расплетая радугу: наука, заблуждения и тяга к чудесам
Шрифт:

Я уделил место в последних главах предостережению от плохой поэзии в науке. Но остальная часть моей книги противоположна. Наука является поэтической, должна быть поэтической, должна еще многому научиться у поэтов и должна использовать хорошие поэтические образы и метафоры для своего вдохновения. «Эгоистичный ген» — это метафорический образ, потенциально хороший, но, к сожалению, способный вводить в заблуждение, если метафору персонификации понимать неправильно. Истолкованный правильно, он может вести нас дорогой глубокого понимания и плодотворного исследования. В этой главе была использована метафора персонифицированного гена, чтобы объяснить смысл, в котором «эгоистичные» гены являются также «кооперирующимися». Ключевой образ, который будет предложен в следующей главе — это образ генов вида как подробного описания ряда окружающих условий, в которых жили их предки — генетическая книга мертвых.

10. Генетическая Книга Мертвых

Помните мудрость из былых времен…

Уильям
Йейтс, «Ветер в камышах» (1899).

Первое сочинение, которое я помню пишется в школе, было «Дневник Пенни». Вы должны были вообразить себя монетой и рассказать вашу историю о том, как вы некоторое время лежали в банке, пока вас не выдали клиенту, что чувствовали, позвякивая в кармане с другими монетами, как вами расплатились за покупку, затем как вами дали сдачу другому клиенту и затем… что ж, вы, вероятно, сами писали подобное сочинение. Полезно поразмышлять о таком же самом пути гена, путешествующего не из кармана в карман, а из тела в тело, по поколениям. И первое, что аналогично монете — это, конечно, то, что персонификация гена не должна восприниматься буквально, не больше, чем мы, семилетние, всерьез полагали, что наши монеты могут разговаривать. Персонификация иногда — полезный прием, и для критиков обвинять нас в принятии её буквально почти столь же глупо, как и буквально само принятие её буквально. Физики не буквально заколдованы своими частицами, и критик, который обвинил бы их в этом, утомительный педант.

Событием «чеканки» гена является мутация, которая приводит к его появлению, изменяя предыдущий ген. Измененной является только одна из многих копий гена в популяции (за одно событие мутации, но идентичная мутация может изменить другую копию гена в генофонде в другое время). Другие продолжают делать копии оригинального гена, который теперь может считается конкурирующим с мутантной формой. Создание копий — конечно, то, к чему гены, в отличие от монет, в высшей степени способны, и наш дневник гена должен включать приключения не отдельных атомов, из которых складывается ДНК, а приключения ДНК в виде многократных копий в последовательных поколениях. Как показала последняя глава, большая часть «приключений» гена в прошлых поколениях состоит в притирании к другим генам данного вида, и именно поэтому они так дружно сотрудничают в коллективном предприятии строительства тел.

Теперь давайте зададим вопрос: «Все ли гены вида в прошлом пережили одни и те же „приключения“?». Главным образом это так. Большинство генов буйвола могут оглянуться на длинную цепь тел буйволов, которые наслаждались или страдали от общих событий жизни буйвола. Тела, в которых эти гены выживали, включали самцов и самок, больших и малых, и так далее. Но есть подмножества генов с отличным жизненным опытом, например гены, которые определяют пол. У млекопитающих Y хромосомы встречаются только у самцов и не обмениваются генами с другими хромосомами. Таким образом, у гена, находящегося на хромосоме Y, был ограниченный жизненный опыт в телах буйвола: только в самцах. Его жизненный опыт в значительной степени типичен для генов буйвола вообще, но не полностью. В отличие от большинства генов буйвола, он не знает, каково это, находиться в самке буйвола. Ген, который всегда был на хромосоме Y, начиная с возникновения млекопитающих в эпоху динозавров, имеет опыт в телах самцов многих различных видов, но никакого опыта в телах самок какого-либо вида. В случае Х-хромосомы дело сложнее. У млекопитающих мужского пола есть одна X хромосома (унаследованная от матери, плюс одна хромосома Y, унаследованная от отца), в то время как самки имеют две Х-хромосомы (по одной от каждого родителя). Таким образом, каждый ген Х-хромосомы испытал на себе тела и самцов, и самок, но две трети его жизненного опыта были в телах самок. У птиц ситуация обратная. У самки птицы имеются неравные половые хромосомы (которые мы можем также назвать X и Y по аналогии с млекопитающими, хотя официальная терминология птиц отличается), а у самцов две одинаковых (XX).

Все гены других хромосом имели равный опыт тел самцов и самок, но их опыт может быть неодинаков в других отношениях. Ген проведет больше времени, чем его справедливая доля, в телах предков, которые обладают любыми качествами, которые этот ген кодирует — длинные ноги, толстые рога, или что бы там ни было, особенно если это — доминантный ген. Почти столь же очевидно, что все гены скорее всего провели большее предкового времени в успешных, а не в неудачливых телах. Существует много неудачливых тел, и они содержат свой полный набор генов. Но они имеют тенденцию не иметь потомков (именно это означает быть неудачливым), поэтому ген, который оглядывается на свою биографию прошлых тел, заметит, что все тела были успешны (по определению), и, возможно, большинство (но не все) обладали тем, что необходимо, чтобы быть успешными. Разница в том, что особи, которые не оснащены, чтобы быть успешными, несмотря на это иногда имеют потомство. И особи, которые прекрасно оснащены, чтобы выжить и размножаться при обычных условиях, иногда поражает молния.

Если, как у некоторых оленей, тюленей и обезьян, самцы вида формируют иерархию подчинения, и доминирующие самцы участвуют в большей части воспроизводства, то из этого следует, что гены этого вида будут иметь больше опыта в телах доминирующих самцов, чем подчиненных. (Заметьте, что мы больше не используем термин доминантный в его специальном, генетическом смысле, антонимом которого является рецессивный, а используем доминирующий в его обычном, лингвистическом смысле, где антонимом является подчиненный.) В каждом поколении большинство самцов являются подчиненными, но их гены, оглядывясь назад, все равно увидят прочную цепь доминирующих предков мужского пола. В каждом поколении большинство особей порождено доминирующим меньшинством предыдущего поколения. Таким же образом, фазаны, вид, в котором, как мы предполагаем, большинство оплодотворений совершается красивыми (для самок) самцами, большинство генов, находятся ли они теперь в самках, в некрасивых или в красивых самцах, может оглянувшись увидеть длинную цепь красивых предков мужского пола. Гены обладают большим опытом жизни в успешных телах, чем в неудачливых.

В той мере, в какой гены вида имеют регулярный и периодический опыт жизни в подчиненных телах, мы можем рассчитывать на наблюдение условной стратегии «максимально эффективно применять то, что есть». У тех видов, где успешные самцы драчливо защищают многочисленные гаремы, мы иногда замечаем подчиненных самцов, использующих альтернативные, стратегии «исподтишка» для того, чтобы получить мимолетный доступ к самкам. Тюлени обладают одним из самых гаремодоминантных сообществ в животном мире. В некоторых популяциях, более 90 процентов совокуплений постигается менее чем 10 процентами самцов. Большинство холостых самцов в стаде, выжидая своего момента, чтобы сместить одного из хозяйничающих в гареме быков, готовы к возможности совокупления со временно оставленными без присмотра самками. Но, для такой альтернативной мужской стратегии, которой благоприятствовал естественный отбор, должна существовать, по крайней мере, значительная струйка генов, которые прокрадывались из поколения в поколение через совокупления исподтишка. В таком случае, выражаясь языком «дневника генов», по крайней мере некоторые гены хранят запись и подчиненных самцах в своем прошлом жизненном опыте.

Не поймите неправильно слово «опыт». Речь идет не только о том, что слово должно пониматься метафорически, а не буквально. Это, я надеюсь, очевидно. Менее очевидно, что мы получаем гораздо более выразительную метафору, если представляем себе весь генофонд вида, а не один ген, как сущность, которая приобретает опыт из прошлого своих предков. Это еще один аспект нашей доктрины «эгоистичного кооператора». Позвольте мне попытаться расшифровать, что значит говорить о виде, или его генофонде, который обучается на собственном опыте. За эволюционное время виды изменяются. В любом поколении, конечно, вид состоит из множества отдельных его членов, живущих на тот момент. Очевидно, этот набор изменяется, когда рождаются новые члены, а старые умирают. Это изменение само по себе не заслуживает того, чтобы считаться получающим выгоду от опыта, но статистическое распределение генов в популяции может систематически сдвигаться в некотором заданном направлении, и это представляет собой «опыт вида». Если подкрадывается ледниковый период, то будет встречаться все больше особей с толстым волосяным покровом. Особи, которым посчастливилось быть волосатыми, в каждом поколении, как правило, вносят больший вклад в потомство, чем их справедливая доля, и в результате гены волосатости перейдут к следующему поколению. Набор генов в популяции в целом — и, следовательно, генов, которые вероятно, будут содержаться в типичной среднестатистической особи — будет все больше и больше смещаться в сторону генов волосатости. То же самое происходит и с другими типами генов. С течением поколений, весь набор генов вида — генофонд — вырезется и выстругивается, замешивается и формуется настолько, что становится хорош в создании успешных особей. Именно в этом смысле я говорю, что вид обучается на своем опыте в искусстве строительства хороших тел особей, и он хранит свой опыт в закодированной форме в наборе генов генофонда. Геологическое время — масштаб, на котором виды становятся опытными. Информация, которая набирается с опытом — это информация о предковой окружающей среде, и о том, как в ней выжить.

Вид — это усредняющий компьютер. Он выстраивает поколение за поколением, статистическое описание миров, в которых предки сегодняшних представителей этих видов жили и размножались. Это описание написано на языке ДНК. Оно находится не в ДНК каждого индивида, но совокупно в ДНК — эгоистичных кооператорах — всей размножающейся популяции. Возможно, «выборка информации» лучше отражает суть, чем «описание». Если вы найдете тело животного, новый вид, ранее неизвестный науке, знающий зоолог сможет исследовать и анатомировать каждую его деталь, способен «прочитать» его тело и рассказать нам об окружении, в котором жили его предки: пустыне, тропическом лесу, арктической тундре, умеренной лесистой местности или коралловом рифе. Зоолог должен быть также способен сказать вам, читая его зубы и кишечник, чем животное питалось. Плоские, подобные жерновам зубы и длинный кишечник со сложными тупиками указывают, что это было травоядное животное; острые, режущие зубы и короткий, несложный кишечник указывают на плотоядное животное. Лапы животного, его глаза и другие органы чувств разъясняют способ, которым оно перемещалось, и как оно искало пищу. Его полосы или пятна, его усики, рога или гребешки обеспечивают, для посвященного, чтение сведений о его социальной и половой жизни.

Но у зоологической науки впереди длинный путь. Современная зоология может «прочитать» тело вновь обнаруженного вида только до степени грубого, качественного вердикта о его вероятной среде обитания и образе жизни. Зоология будущего занесет в компьютер еще многие параметры анатомии и химии «читаемого» животного. Что еще более важно, мы не будем проводить измерения отдельно. Мы усовершенствуем математические методы объединения информации о зубах, кишечнике, химии желудка, социальной окраске и средствах защиты, крови, костях, мускулах и связках. Мы объединим методы анализа взаимосвязи этих параметров друг с другом. Компьютер, объединив все, что известно о теле неизвестного животного, построит подробную, количественную модель мира, или миров, в которых выжили предки животного. Это, мне кажется, равносильно утверждению, что животное, любое животное, это модель или описание его собственного мира, а точнее миров, в которых естественным отбором отобирались гены его предков.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Книга пяти колец. Том 2

Зайцев Константин
2. Книга пяти колец
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Книга пяти колец. Том 2

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина