Чтение онлайн

на главную - закладки

Жанры

Распространненость жизни и уникальность разума?

Мосевицкий Марк Исаакович

Шрифт:

Литература к 8.4.2.

Глэд Д. Будущая эволюция человека– Евгеника XXI века. М.: «Издательство Захарова», 2005. – 176 с.

Хан Ю. В. Евгенический проект: «pro» и «contra». М., 2003. – 153 с.

Borg H. (2003) Alternative method of gifted identification using the AMI: an apparatus for measuring internal meridians and their corresponding organs. J Altern Complement Med. 9, 861–757.

Chen C.T. et al (2007). The strength of selection on ultraconserved elements in the human genome. Am J Hum Genet., 80, 692–704.

Detterman D.K. (1993) Giftedness and intelligence: one and the same? Ciba Found Symp., 178. 22–31; Discussion 31–43.

Haworth C.M. et al. (2009) Generalist genes and high cognitive abilities. Behav Genet., 39, 437–445.

Kelley J.L. and Swanson W.J. (2008) Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet., 9, 143–160.

Lao O. et al. (2007) Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet., 71, 354–369.

Lee K.H. et al., (2006) Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage, 29, 578–586.

Martin N.W. et al., (2009) Genetic covariation between the Author Recognition Test and reading and verbal abilities: what can we learn from the analysis of high performance? Behav Genet., 39,417–426.

Nisbett R.E. et al. (2012) Intelligence: New findings and theoretical developments. Am Psychol., 67,130–159.

Pickrell JK, et al. (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res., 19, 826–837.

Plomin R, and Thompson L.A. (1993) Genetics and high cognitive ability. Ciba Found Symp., 178, 67–79; Discussion 79–84.

Scheinfeldt L.B. et al. (2009) Population genomic analysis of ALMS1 in humans reveals a surprisingly complex evolutionary history. Biol Evol., 26, 1357–1367. Scheinfeldt LB, et al. (2011) Clusters of adaptive evolution in the human genome. Front Genet., 2, 50.

Swallow D.M. (2003) Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 37, 197–219.

Tishkoff S.A. and Verrelli B.C. (2003) Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet., 4, 293–340.

Vinkhuyzen A.A. et al. (2009) The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behav Genet., 39, 380–392.

Xue Y. et al. (2009) Population differentiation as an indicator of recent positive selection in humans: an empirical evaluation. Genetics, 183, 1065–1077.

8.4.3.

Клонирование людей как семейное решение

Клонирование может стать еще одним подходом к созданию особей с повышенным интеллектом. Напомним, что при клонировании ядро диплоидной соматической клетки (как правило, для этой цели выбирают слабо дифференцированную стволовую клетку) пересаживают в яйцеклетку, ядро которой было удалено. После определенной стимуляции, побуждающей к делению, зародыш выращивают на питательной среде до, приблизительно, 100 клеток и пересаживают матери. Вынашивание плода приводит к появлению полного генетического двойника владельца пересаженного ядра. На самом деле, после превращения клонирования в рутину этот метод размножения может стать семейным решением. Скажем, в яйцеклетке жены собственное ядро замещено ядром соматической клетки мужа. Ребенок станет “вылитым” отцом. При этом, наследование внеядерной (митохондриальной) ДНК будет, как обычно, продолжено по материнской линии. Если такой вариант получения потомства вызван желанием воспроизвести в нем присущие отцу таланты или высокий интеллект, то это еще и евгеника (+). Объявленная недавно возможность сохранения яйцеклетки в замороженном состоянии добавляет ряд важных вариантов семейных решений.

Элемент евгеники в клонировании может быть усилен, если “отцовские” соматические клетки предварительно трансформировать, внеся в их геном улучшенный вариант того или иного гена. Можно ожидать, что уже в недалеком будущем начнет реализовываться очевидная идея замены у людей дефектных и даже “нормальных” генов их улучшенными аналогами с привлечением разных методов, уже используемых при получении трансгенных животных, в том числе направленного мутагенеза.

8.4.4. Генетические манипуляции с половыми клетками и ранними эмбрионами

Уже в наше время в тех случаях, когда велика вероятность рождения ребенка с наследственным заболеванием, может быть осуществлена селекция на уровне оплодотворенной клетки, а лучше эмбриона. Описан случай, когда у супружеской пары брали генетический материал и путем оплодотворения “в пробирке“ выращивали микроэмбрионы (6 делений оплодотворенной яйцеклетки). У эмбрионов отбирали по отдельной клетке (что не опасно), и соответствующий ген проверялся на присутствие “вредной” мутации. Эмбрион, оказавшийся свободным от этой мутации, был имплантирован матери. Эта процедура гарантировала рождение здорового ребенка. Она не содержит элементов генной инженерии и может быть отнесена к мягкой евгенике (+).

Однако в некоторых случаях может оказаться целесообразным в клетки раннего эмбриона, которые дефектны по определенному гену, внести фрагмент ДНК, несущий нормальный ген. Через несколько циклов клеточных делений следует убедиться, что нормальный ген встроен в геном в надлежащем месте. Модифицированный эмбрион может быть имплантирован матери, которая родит здорового ребенка. С распространением генетических паспортов такие устраняющие дефекты процедуры станут рутинными.

Следующий, далеко не простой психологически, но не сложный технически шаг – манипуляции с яйцеклетками или эмбрионами, направленные не на устранение дефектов, а на улучшение тех или иных качеств. Мы коснемся только обсуждаемого здесь аспекта – повышения мыслительных возможностей людей. Скажем сразу, что такая возможность существует и даже уже осуществлена у экспериментальных животных. Так, создана линия трансгенных животных (мышей), у которых генно-инженерным способом повышено производство белка GAP-43 в клетках нервной системы (Aigner et al., 1995). Этот белок присутствует в мозге всех животных, включая человека. Он локализован, главным образом, в аксонных окончаниях нейронов. Известно, что GAP-43 участвует в регенерации нервных клеток, а также в процессах, связанных с обучением и памятью. Оказалось, что трансгенные животные, благодаря повышенному производству GAP-43, значительно умнее животных с нормальным производством этого белка. Их преимущества наиболее очевидны при выполнении особенно сложных заданий, которые могут быть вообще недоступны “нормальным” животным (Routtenberg et al., 2000; Holahan et al., 2007).

8.4.5. Прицельная трансформация групп клеток мозга

Были проведены также эксперименты по ненаследуемому повышению интеллектуальных возможностей отдельных субъектов. Для успешного выполнения белком GAP-43 и некоторыми другими белками свойственных им функций необходимо присутствие фермента протеинкиназы C (ПКС), осуществляющей выборочное фосфорили-рование белков. Так, в белке GAP-43 ПКС фосфорилирует только один аминокислотный остаток (серин-41). Активный ген ПКС в составе обезвреженного вирусного вектора вводили в контролирующие обучение и память (ассоциативные) участки коры или гиппокампа мозга крысы, где осуществлялась застройка гена ПКС в генетический аппарат ограниченного количества нейронов. Эта процедура существенно повышала способность животного к обучению (Neill, 2001; Zhang et al., 2005). Целесообразен аналогичный эксперимент с геном фермента кальпаин. Этот фермент осуществляет разрыв молекулы GAP-43 около того же серина-41, образуя функционально активные фрагменты (Захаров и др., 2005). Было бы интересно (возможно, опыты уже ведутся) по той же схеме прицельно внедрить дополнительный ген самого белка GAP-43 в нейроны ассоциативных областей мозга пока, естественно, экспериментальных животных. Особенно большой эффект улучшения памяти и повышения способности к обучению можно ожидать при одновременной трансформации соответствующих участков мозга также по другим генам, продукты которых участвуют в этих процессах.

Поделиться:
Популярные книги

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Второй Карибский кризис 1978

Арх Максим
11. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.80
рейтинг книги
Второй Карибский кризис 1978

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать