Чтение онлайн

на главную

Жанры

Рассказ предка. Паломничество к истокам жизни
Шрифт:

Белки – это удивительные ферменты, способные скручиваться в узлы любой нужной формы. Но они никуда не годятся как репликаторы. В отличие от ДНК и РНК, составные элементы которых подчиняются определенным правилам спаривания (правила комплементарности Уотсона и Крика), аминокислоты таких правил не имеют. Поэтому ДНК, в противоположность белкам, является прекрасным репликатором, но совершенно не годится на роль фермента. Причина в том, что, в отличие от белков с их почти бесконечным разнообразием трехмерных форм, ДНК имеет лишь одну форму: двойную спираль. Она идеально подходит для репликации, поскольку две стороны “лестницы” легко отделяются друг от друга и могут служить матрицами для присоединения новых “букв” согласно правилам комплементарности Уотсона и Крика. Однако для чего-либо еще это свойство бесполезно.

РНК

обладает некоторыми репликативными свойствами ДНК и одновременно некоторыми ферментативными свойствами белка. Четыре “буквы” РНК похожи на четыре “буквы” ДНК, благодаря чему любой их набор может служить матрицей для другой цепи. С другой стороны, РНК не так легко формирует длинную двойную спираль и в этом отношении уступает ДНК. Отчасти это объясняется тем, что системе двойной спирали приходится прибегать к исправлению ошибок. Когда двойная спираль ДНК расплетается и на каждой из одиночных одновременно выстраивается комплементарная цепь, ошибки могут быть сразу замечены и исправлены. Поскольку каждая дочерняя цепь остается прикрепленной к родительской цепи, их сравнение делает возможным немедленное выявление ошибок. Исправление ошибок, основанное на этом принципе, уменьшает их частоту примерно до одной на миллиард, что делает возможным существование больших геномов, таких как наш. В РНК же, лишенной системы исправления ошибок такого типа, частота мутаций в тысячи раз выше, чем у ДНК. Поэтому пользоваться РНК в качестве основного репликатора могут лишь простые организмы с небольшими геномами, например некоторые вирусы.

Но в отсутствии двойной спирали есть и плюсы. Поскольку цепь РНК не существует в виде двойной спирали и отделяется от родительской цепи сразу после формирования, она, как и белок, способна скручиваться в узлы. Подобно тому, как белок скручивается благодаря химическому сродству аминокислот в разных участках одной цепи, РНК формирует узлы согласно обычным правилам комплементарности Уотсона и Крика. Иными словами, в отсутствие комплементарной цепи двойной спирали, как в случае ДНК, РНК может свободно спариваться с комплементарными участками самой себя. РНК находит у себя короткие участки, с которыми она может спариваться, образуя либо миниатюрную двойную спираль, либо иную структуру. Правила комплементарности требуют, чтобы направленность этих участков была противоположной. Поэтому цепь РНК часто сворачивается в ряд шпилек.

Разнообразие трехмерных форм, в которые может сворачиваться молекула РНК, не так велико, как разнообразие форм какого-нибудь крупного белка. Но и этого вполне достаточно, чтобы РНК могла выполнять ферментативные функции. Выявлено много ферментов РНК, названных рибозимами. Итак, у РНК есть некоторые репликативные свойства ДНК и некоторые ферментативные свойства белков. Возможно, до появления ДНК (архаичного репликатора) и белков (архаичных катализаторов) функции и тех, и других выполняла РНК. Позднее она стала синтезировать белки. Белки, в свою очередь, стали помогать синтезировать РНК, а потом и ДНК, которая в итоге стала выполнять функцию главного репликатора.

Теория “мира РНК” получила косвенное подтверждение в ряде замечательных экспериментов, который провел Сол Шпигельман из Колумбийского университета, а позднее в различных вариантах повторили другие ученые. В экспериментах Шпигельмана использовался белковый фермент – что, конечно, можно счесть нечестным, однако результаты были настолько впечатляющими и прояснили столько важных звеньев теории “мира РНК”, что того стоили.

Сначала об истории вопроса. Существует вирус QP. Это вирус РНК – то есть вместо ДНК его гены состоят из РНК. Для репликации этой РНК вирус использует фермент Q-репликазу. В “диком” виде QP является бактериофагом – паразитом кишечной бактерии Escherichia coll. Бактериальная клетка решает, что РНК вируса QP – часть ее собственной информационной РНК, и ее рибосомы обрабатывают чужую РНК точно так, как и собственную. Однако белки, которые при этом образуются, полезны вирусу, но не бактерии-хозяину. Таких белков четыре: белок оболочки, нужный для защиты вируса; клейкий белок для прикрепления к бактериальной клетке; так называемый фактор репликации, о котором я расскажу ниже; белок-бомба, который разрушает бактериальную клетку после того, как вирус закончил

реплицироваться, и высвобождает десятки тысяч вирусных частиц, каждая из которых будет блуждать в своей белковой оболочке, пока не встретит новую бактериальную клетку.

Я обещал рассказать о факторе репликации. Это не фермент Q-репликаза, он меньше и проще. Этот небольшой вирусный ген отвечает за синтез белка, “сшивающего” три других белка, которые бактерия синтезирует для своих (совершенно иных) нужд. Вместе три белки образуют Q-репликазу.

Шпигельман смог изолировать в этой системе всего два компонента: Q-репликазу и Q-РНК. Он поместил их в воду вместе с некоторыми низкомолекулярными веществами – строительными элементами для синтеза РНК – и принялся ждать. РНК захватывала маленькие молекулы и синтезировала собственные копии согласно правилам комплементарности Уотсона и Крика. Причем она справлялась с этим без помощи бактерии-хозяина, белковой оболочки или какой-либо иной части вируса, что само по себе любопытно. Заметьте, что синтез белка, который в естественных условиях является одной из обычных функций РНК, был полностью изъят из цикла. Мы получили голую систему репликации РНК, создающую свои копии, не утруждаясь синтезом белков.

И тут Шпигельман в искусственном мире – в пробирке, в отсутствие каких-либо клеток – запустил действующую модель эволюции. Его экспериментальная установка представляла собой длинный ряд пробирок, содержащих Q-репликазу и строительные элементы, не содержащих РНК. В первую пробирку он поместил небольшое количество Q-РНК, и она послушно синтезировала множество своих копий. Взяв каплю полученной жидкости, Шпигельман поместил ее во вторую пробирку. Эта “затравочная” РНК принялась реплицироваться во второй пробирке, и через некоторое время Шпигельман извлек оттуда каплю жидкости и перенес в третью пробирку. И так далее. Похоже на то, как искра, воспламеняя сухую траву, приводит к появлению нового костра. Однако огонь не наследует качеств искры, а молекулы РНК у Шпигельмана это делали. И это позволило добиться эволюции путем естественного отбора в ее самой простой форме.

Шпигельман брал пробы каждого “поколения” РНК из пробирок и изучал их свойства, в том числе способность инфицировать бактерии. И получил удивительные результаты. Эволюционирующие РНК становились все меньше и одновременно утрачивали способность к инфицированию бактерий. Через 74 поколения от типичной молекулы РНК в пробирке осталась лишь небольшая часть исходного размера “дикого” предка. РНК “дикого” типа представляла собой цепь длиной 3600 “бусин”. Спустя 74 поколения естественного отбора средний обитатель пробирки уменьшился до скромных 550 оснований. Такая молекула уже не годилась для инфицирования бактерий, зато отлично справлялась с инфицированием пробирок.

Произошло вот что. Со сменой поколений в РНК происходили спонтанные мутации, и выжившие мутанты приспосабливались жить в мире пробирок, а не в естественном мире бактерий, которые можно инфицировать. Основное различие предположительно в том, что РНК в пробирках могла обходиться без тех частей кода, которые нужны для синтеза четырех указанных выше белков, необходимых вирусу “дикого” типа для паразитирования на бактериях. И то, что осталось от РНК, было минимумом, нужным для репликации в тепличном мире пробирок, полных Q-репликазы и строительных компонентов.

Этот выживший кусочек РНК, размером менее десятой части своего “дикого” предка, стал известен как монстр Шпигельмана. Благодаря небольшому размеру эта экономичная конструкция репродуцируется быстрее, чем конкуренты, и поэтому естественный отбор постепенно увеличивает его численность в популяции (популяция в данном случае – самое верное слово, хотя мы говорим о свободно плавающих молекулах, а не о вирусах или каких-нибудь других организмах).

Поразительно, но “монстр Шпигельмана” снова эволюционирует при повторных проведениях эксперимента. Более того, Шпигельман вместе с Лесли Оргелом, ведущим специалистом в области исследований происхождения жизни, провел дополнительные эксперименты. Ученые добавляли в раствор вредное вещество – бромистый этидий. В таких условиях в растворе эволюционировал другой монстр, устойчивый к бромистому этидию. То есть загрязнение раствора разными химическими веществами способствует эволюции монстров с разной специализацией.

Поделиться:
Популярные книги

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Младший научный сотрудник 2

Тамбовский Сергей
2. МНС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Младший научный сотрудник 2

Измена. Мой непрощённый

Соль Мари
2. Самойловы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Мой непрощённый

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

"Малыш"

Рам Янка
2. Девочка с придурью
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Малыш

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Невеста напрокат

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Невеста напрокат

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Сбой Системы Мимик! Академия

Северный Лис
2. Сбой Системы!
Фантастика:
боевая фантастика
юмористическая фантастика
5.71
рейтинг книги
Сбой Системы Мимик! Академия