Чтение онлайн

на главную

Жанры

Рассказы о биоэнергетике
Шрифт:

Час от часу не легче! Сначала мы обнаружили, что нам надо уследить за частицей в 30 тысяч раз более мелкой, чем ее носитель, а теперь выясняется, что время перемещения этой частицы измеряется тысячными или даже миллионными долями секунды. За это время протон проходит путь, равный 50 ангстремам, или 0;000000005 метра.

Невелика дистанция!..

А ведь нужно засечь местонахождение протона на промежуточных этапах его перемещения в белковой молекуле, если мы хотим начертить его траекторию и понять, почему он движется так, а не иначе. Значит, интересующие нас отрезки времени и расстояния в действительности еще меньше.

В решении этой

на первый взгляд неподъемной проблемы помог метод, который уже однажды выручил нас, когда мы пытались наладить прямое измерение генерации электрического тока и напряжения мембранными белками.

Помните, как удалось зарегистрировать образование разности потенциалов бактериородопсином? Протеолипосомы, содержащие в свой мембране бактериородопсин, прикрепили к плоской искусственной мембране, по обе стороны которой были электроды. Освещение вызывало транспорт ионов Н+ через мембрану протеолипосом, что регистрировалось подключенным к электродам вольтметром как уменьшение количества положительных зарядов в том отсеке, куда обращена покрытая протеолипосомами сторона плоской мембраны.

Современная электрометрическая техника достигла таких вершин, что уже можно измерять генерацию разности потенциалов со скоростью 10-7—10-8 секунды. Это гораздо быстрее, чем время, затрачиваемое молекулой бактериородопсина на перенос одного протона через мембрану. Стало быть, само по себе измерение перемещений протона в мембране не встречает принципиальных трудностей. Но как это сделать практически?

Протеолипосомы, покрывающие поверхность плоской мембраны на отверстии радиусом около 1 миллиметра, содержат в общей сложности порядка миллиона молекул бактериородопсина. Проблема состоит в том, чтобы синхронизировать работу всех этих фотогенераторов, каждый из которых работает сам по себе. Оказалось, что в принципе и это можно сделать. Существуют лазеры, генерирующие световую вспышку продолжительностью менее 10-7 секунды. Если осветить молекулы бактериородопсина такой вспышкой, то все они сработают практически одновременно и только один раз.

Итак, предельно быстрые скорости измерения разности потенциалов и предельно короткие вспышки света — вот что необходимо, если мы собираемся следить за судьбой протона, переносимого бактериородопсином. К этому надо добавить предельно высокую чувствительность измерительной аппаратуры, чтобы уловить изменение электрических параметров бактериородопсина при небольших смещениях протона внутри его молекулы.

Работать на пределе технических возможностей можно лишь при условии, что исследуемый объект сам по себе стабилен и выдает некий повторяющийся от опыта к опыту результат.

Казалось бы, бактериородопсин должен лучше, чем что бы то ни было, подходить для такой работы (вспомним чрезвычайную устойчивость этого белка к всевозможным изменениям условий среды). Спору нет, сам по себе бактериородопсин стабилен, да вот плоская мембрана, на которую нужно сорбировать протеолипосомы с этим белком, не слишком прочна. К тому же ее прочность уменьшается после присоединения протеолипосом. Как выйти из этого нового затруднения?

Чтобы ответить на поставленный вопрос, придется подумать о причине нестойкости плоской искусственной мембраны, сделанной из фосфолипидов. Причина эта кроется, по-видимому, в огромной диспропорции между толщиной и протяженностью мембраны. По существу, жидкокристаллическая мембрана, имеющая в поперечнике около 5•10-9 метра, закрывает отверстие диаметром около 2•10-3 метра. В привычных для повседневной

жизни масштабах это все равно что пленкой толщиной 2,5 миллиметра перекрыть морской пролив глубиной и шириной в 1 километр.

Столь тонкие искусственные мембраны — излюбленный объект исследований по моделированию свойств природных мембран, имеющих ту же толщину. Однако так ли необходимо работать с тонкой мембраной в нашем случае? Ведь у нас она просто сорбент для протеолипосом. Если уж мы решили следить за движением протона в молекуле бактериородопсина, то в общем-то безразлично, на чем сидит бактериородопсиновая протеолипосома — на тонкой мембране или какой-то другой подложке.

И мы отказались от тонких («черных») мембран, использованных в первых наших опытах с протеолипосомами. Вместо них взяли коллодиевую пленку, пропитанную раствором фосфолипидов в углеводороде декане. Это позволило не только стабилизировать систему, но и увеличить в 10 раз диаметр отверстия между двумя отсеками, куда помещены электроды.

В результате количество бактериородопсиновых протеолипосом, сорбированных на поверхности фильтра, было в 100 раз больше, чем в случае тонкой мембраны. Фотоэлектрический эффект системы, пропорциональный содержанию бактериородопсина, также должен был увеличиться на два порядка. Если бы даже в этом случае эффект оказался все еще слишком мал, чтобы быть зарегистрированным вольтметром, то есть меньше уровня шумов измерительной аппаратуры, мы могли бы вытянуть его из-под этих шумов, многократно повторяя вспышку лазера и используя ЭВМ для отделения эффекта от шумов.

Подключив ЭВМ, мы завершили наконец сооружение установки, с помощью которой можно было бы, в принципе говоря, приступить к изучению белка — генератора тока. По мере монтажа установки небольшая пластмассовая ячейка, разделенная на два отсека перегородкой с отверстием посередине (та, что служила нам верой и правдой в первых опытах с бактериородопсином), обросла таким количеством сложнейших устройств, что нужен был Л. Драчев в качестве специального гида, чтобы объяснить, где же у этого агрегата начало, а где конец.

Неодимовый лазер, система зеркал, ячейка с коллодиевой пленкой и протеолипосомами, каскад быстродействующих усилителей электрических сигналов, блок памяти, ЭВМ и особая система, синхронизирующая работу оптической и электрической систем с точностью до сотых долей микросекунды. Как разительно отличается эта установка от аппаратуры первых опытов биоэнергетиков, где, кроме манометра и примитивного колориметра, никаких других приборов не требовалось! Отсчет времени тогда шел в минутах, а за процессом следили по убыли кислорода и фосфата, если измерялось окислительное фосфорилирование в митохондриях. О пространственном векторе процесса вообще не было и речи. Точность измерения зависела от того, насколько вам удалось совместить уровень ваших глаз с уровнем жидкости в манометре.

Теперь вместо сложно устроенных митохондрий наш объект — индивидуальный, белок, временная шкала — доли микросекунды, а задача — проследить за передвижением протона, путешествующего от одной поверхности мембраны к другой по встроенной в эту мембрану белковой молекуле.

Но как сработает вся эта громада аппаратуры? Хватит ли чувствительности вольтметра? Не затрубит ли какая-нибудь паразитная емкость шкалу времени?

Драчев уверен, что все будет в порядке. Его гарантия — залог успеха. Говорят, что у Драчева есть необычайное свойство: в его присутствии любой прибор работает нормально.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Последний Паладин. Том 8

Саваровский Роман
8. Путь Паладина
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Последний Паладин. Том 8

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

В ожидании осени 1977

Арх Максим
2. Регрессор в СССР
Фантастика:
альтернативная история
7.00
рейтинг книги
В ожидании осени 1977

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание