Рассказы о математике с примерами на языках Python и C
Шрифт:
(2 * n + 12) / 2 - n = n + 6 - n = 6, независимо от значения n.
Отгадывание чисел
Есть другой фокус с отгадыванием чисел. Попросим человека загадать трехзначное число, числа в котором идут в порядке уменьшения (например 752). Попросим человека выполнить следующие действия:
– записать число в обратном порядке (257)
– вычесть его из исходного числа (752 - 257 = 495)
– к ответу добавить его же, только в обратном порядке (495 + 594)
Получится число 1089, которое «фокусник» и объявляет публике.
Математически это тоже несложно доказать.
– Любое число вида abc в десятичной системе счисления представляется так:
abc = 100 * a + 10 * b + c.
– Разность чисел abc - cba:
100 * a + 10 * b + c + 100 - 100 * c - 10 * b - a = 100 * a - 100 * c - (a - c) = 100 * (a - c) - (a - c)
–
100 * (a - c) - (a - c) = 100 * (a - c) - 100 + 90 + 10 - (a - c) = 100 * (a - c - 1) + 10 * 9 + (10 - a + c)
Мы узнали разряды числа, получающегося в результате:
a1 = a - c - 1, b1 = 9, c1 = 10 - a + c
– Добавляем число в обратном порядке:
a1b1c1 + c1b1a1 = 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1
Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.
3. Число Пи
Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник — с помощью числа Пи. Число Пи — несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется везде, от кройки и шитья до расчетов гармонических колебаний в физике и радиотехнике.
Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение: Pi = 3,1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ — взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимед предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: = 3,1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).
Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:
– Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.
– Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.
– Число Пи является бесконечным.
– Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой «магии» тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.
И наконец, перейдем к формулам вычисления Пи, т. к. именно в них можно увидеть красоту числовых взаимосвязей — то, чем интересна математика.
Формула Лю-Хуэя (3й век):
Формула Мадхавы-Лейбница (15 век):
Формула Валлиса (17 век):
Формула Мэчина (18 век):
Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:
Запустим программу в любом онлайн-компиляторе языка Питон (например. Получаем результат:
Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно, что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15-м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков: