Рассказы о математике с примерами на языках Python и C
Шрифт:
Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.
Первым шагом необходимо вычислить 12. Возникает резонный вопрос — как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется «вавилонским». Суть его в вычислении S по простой формуле:
Здесь x0 —
Запишем формулу в виде программы:
Результаты весьма интересны:
Шаг | Значение | Погрешность |
1 | 3.5 | 0.25 |
2 | 3.464285714285714 | 0.00127 |
3 | 3.464101620029455 | 3.3890E-8 |
4 | 3.464101615137754 | 2.392873369E-17 |
Результат: 12 = 3,464101615137754
Как можно видеть, сделав всего 4 шага, можно получить 12 с достаточной точностью, задача вполне посильная даже для ручных расчетов 15 века.
Наконец, запрограммируем вторую часть алгоритма — собственно вычисление Пи.
Результаты работы программы:
Уже на 24-м шаге мы получаем искомые 11 знаков числа Пи. Задача явно требовала больше времени чем сейчас, но вполне могла быть решена в средние века.
Современные формулы не столь просты внешне, зато работают еще быстрее. Для примера можно привести формулу Чудновского:
Для сравнения, те же 24 итерации по этой формуле дают число Пи со следующей точностью:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249.
Если сделать 100 итераций и вычислить 1000 знаков Пи, то можно увидеть так называемую «точку Фейнмана»:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420207
Это последовательность «999999», находящаяся на 762-м знаке от начала. Желающие могут поэкспериментировать дальше самостоятельно с помощью программы на языке Python: