Чтение онлайн

на главную - закладки

Жанры

Рассказы о математике с примерами на языках Python и C
Шрифт:

9. Числа Фибоначчи

Возьмем 2 числа: 0 и 1. Следующее число рассчитаем как сумму предыдущих чисел, затем повторим процесс.

Мы получили последовательность, известную как числа Фибоначчи:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ...

Эта последовательность была названа в честь итальянского математика 12 века Леонардо Фибоначчи. Фибоначчи рассматривал задачу роста популяции кроликов. Если предположить, что новорожденная пара кроликов 1 месяц растет, через месяц начинает спариваться, и затем через каждый месяц дает потомство, то количество пар кроликов несложно подсчитать:

Как

можно видеть, число пар образует как раз те самые числа Фибоначчи. Сама последовательность Фибоначчи кажется простой. Но чем она интересна? Пример с кроликами не случаен — эти числа действительно описывают множество природных закономерностей:

–  Множество растений имеют количество лепестков, равное одному из чисел Фибоначчи. Количество листьев на стебле также может описываться этим законом, например у тысячелистника.

–  Другое известное изображение — спираль Фибоначчи, которая строится по похожему принципу соотношения размеров прямоугольников:

Это изображение также часто встречается в природе, от раковин моллюсков, до формы атмосферного циклона или даже спиральной галактики.

Для примера достаточно взять фотографию циклона из космоса, и наложить обе картинки вместе:

–  Если взять и разделить друг на друга 2 любых соседних члена последовательности, например 233/377, получится число 0,618. Случайно это или нет, но это число — то самое «золотое сечение», считающееся наиболее эстетичной пропорцией.

Числа Фибоначчи несложно вывести в программе на языке Python:

from decimal import *

def printNumbers(n):

i1 = Decimal(0)

i2 = Decimal(1)

for p in range(1, n+1):

print("F({}) = {}".format(p, i2))

fib = i1 + i2

i1 = i2

i2 = fib

getcontext.prec = 100

N = 100

printNumbers(N)

Интересно заметить, что растет последовательность Фибоначчи весьма быстро, уже

F(300) = 222232244629420445529739893461909967206666939096499764990979600.

10. Высота звуков нот

Еще в древности человек заметил, что натянутая струна порождает колебания звука. Во времена Пифагора было замечено, что струны издают мелодичный звук, если их длина соотносится как небольшие целые числа (1:2, 2:3, 3:4 и т. д.). Звук от струны длиной 2/3 дает чистую квинту, 3/4 струны дает кварту а половина струны — октаву.

Рассмотрим струну с условной длиной = 1. Будем умножать длину струны на 3/2, если полученное число больше 2, разделим еще на 2.

1.

3/2 = 1,5

1.5 * 3/2 = 2.25, 2.25/2 = 1,125 = 9/8

9/8 * 3/2 = 1,6875 = 27/16

Похожий ряд, если его упорядочить по возрастанию, называется пифагоровым строем:

«до» — 1

«ре» — 9/8

«ми» — 81/64

«фа» — 4/3

«соль» — 3/2

«ля» — 27/16

«си» — 243/128

«до» — 2

Он

также называется квинтовым, т. к. ноты получались увеличением на квинту, т. е. на 3/2. Считается, что этот строй использовался еще при настройке лир в древней Греции, и сохранился вплоть до средних веков. Названия нот разумеется, были другие — современные названия придумал только через 1000 лет итальянский теоретик музыки Гвидо д’Ареццо в 1025 г.

Разумеется, в древней Греции никто не знал про частоту колебаний звука, зато древние греки были хорошими геометрами, и проблем с умножением и делением у них не было. Современная теория колебаний струны появилась гораздо позже, работы Эйлера и Д’Аламбера были написаны в 1750-х годах.

Как математически определяются частоты звуков нот? Сейчас мы знаем, что октава (от «до» до «до» следующей октавы) — это умножение частоты на 2 (или укорочение струны в 2 раза). Для остальных нот с 18 века используется так называемый «хорошо темперированный строй»: октава делится на 12 равных промежутков, а последовательность частот образует геометрическую прогрессию.

Для одной октавы получаются следующие коэффициенты: 1,0594, 1,1224, 1,1892, …, 2. На клавиатуре они отображаются всем известным образом, образуя 12 полутонов:

Таким образом, если знать частоту любой ноты, все остальные легко рассчитываются по вышеприведенной формуле.

Очевидно, что «базовая» частота может быть любой. Традиционно принято например, что частота камертона ноты «Ля» 440 Гц. Остальные ноты первой октавы:

ДО 261.6 ДО# 277
РЕ 293.7 РЕ# 311
МИ 329.6
ФА 349.2 ФА# 370
СОЛЬ 392 СОЛЬ# 415
ЛЯ 440 ЛЯ# 466
СИ 494

Интересно заметить, что квинта в этой системе имеет соотношение частот 27/12 = 1,49, что чуть-чуть отличается от «пифагорейского» чистого тона с соотношением 1.5. На слух «современная квинта» имеет небольшие биения 0,5 Гц, соответствующие разности частот 392—392,4. До сих пор есть любители исполнения старинной музыки в квинто-терцевом строе, называемым «чистым». В 18-м же веке дебаты между приверженцами «старого» и «нового» строя были довольно-таки острыми. Впрочем, преимущества равномерно темперированного строя в виде четкого соотношения между частотами нот и возможности транспонирования музыки в любую другую тональность «без потери качества» оказались решающими. Сейчас «чистый строй» имеет лишь историческое значение, и используется лишь иногда для исполнения старинных произведений.

Поделиться:
Популярные книги

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Возвращение Безумного Бога 5

Тесленок Кирилл Геннадьевич
5. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 5

Ненужная жена

Соломахина Анна
Любовные романы:
любовно-фантастические романы
5.86
рейтинг книги
Ненужная жена

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Новая мама в семье драконов

Смертная Елена
2. В доме драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Новая мама в семье драконов

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9