Чтение онлайн

на главную

Жанры

Разум, машины и математика. Искусственный интеллект и его задачи
Шрифт:

Знаменитый робот ASIMO, созданный в компании Honda, способен, подобно человеку, спускаться по лестнице и играть в футбол.

И вновь интеллектуальный анализ данных

Искусственная жизнь привлекательна и окутана тайной для непосвященных. Однако описанные нами понятия, которые скрываются за определением

искусственной жизни, например клеточные автоматы, используются для решения достаточно прозаических инженерных задач, в частности для интеллектуального анализа данных, о котором мы уже рассказали. В задачах анализа данных для получения выводов требуется обрабатывать огромные объемы данных, что не под силу экспертам-людям. По этой причине для анализа обычно используются интеллектуальные информационные инструменты.

Анализ данных можно выполнить множеством средств, среди которых особое место занимают клеточные автоматы, так как они позволяют представить взаимосвязи между данными в пространстве. Допустим, что мы анализируем данные о продажах зонтов в конкретной стране. Сведения о продажах с разбивкой по клиентам могут быть обработаны без учета местоположения, в лучшем случае — разделены на категории по территориям: к примеру, клиент А из города X приобрел 20 единиц товара, клиент В из города У — 240 единиц, клиент С из города Z — 4530 единиц. В системе, где не учитывается территориальное распределение, города XY и Z — всего лишь категории, и мы никак не можем указать, что город X находится в 150 км к югу от Y, а Y — в 400 км южнее Z. Если мы будем учитывать эти данные, то станет понятно, что в северном регионе страны дожди идут чаще, а к югу продажи зонтов существенно снижаются.

Теперь представим данные о местоположении в виде таблицы, подобно тому, как это происходит при использовании клеточных автоматов. Постараемся связать расположение данных в таблице с реальным географическим местоположением регионов, откуда поступили данные о продажах. При таком представлении данных территориальное расположение можно учесть намного более интеллектуальным способом, чем при простом разбиении на категории.

После сведения данных в таблицу можно применить эволюционный алгоритм, позволяющий обнаружить правила, которые необходимо реализовать в клеточном автомате для анализа. Вернемся к примеру с продажами зонтов и дополним данные о продажах уровнем осадков в егионах. Мы можем разработать алгоритм, позволяющий получить множество правил, согласно которым раскрасим клетки таблицы в тот или иной цвет в зависимости от продаж зонтов в различных регионах, исключив влияние уровня осадков. Если мы представим данные о продажах на карте без учета уровня осадков, получим следующую картину.

Если мы исключим воздействие разного уровня осадков, карта будет выглядеть следующим образом.

На основе этих данных эксперт может определить, что объем продаж выше всего в центральных и южных регионах. Это означает, что уровень покупательной способности в этой части страны выше: из-за особенностей погоды зонты не являются товаром первой необходимости, однако люди готовы покупать их. Далее компания — продавец зонтов повысит цены в центре и на юге страны: хотя в этом регионе продажи меньше, люди покупают зонт не из необходимости, а как предмет роскоши, следовательно, менее чувствительны к цене.

Программирование роботов

Еще одна очень важная область, в которой используется искусственная жизнь и сложные адаптивные системы в целом, это программирование роботов. Постепенно широкому потребителю становятся доступными домашние роботы, способные пылесосить, протирать пол и даже определять вторжение посторонних в квартиру.

Такие роботы обычно мобильны, однако их перемещениями и действиями должна руководить интеллектуальная система. Рассмотрим роботов-пылесосов и покажем, как они соответствуют определению сложных адаптивных систем.

Робот-пылесос — один из самых известных домашних роботов.

— Агрегирование. Разумеется, эти роботы представляют собой агрегированные системы, так как содержат мотор, датчики присутствия, пылесос, устройство обработки данных, определяющее, в каком направлении должен двигаться робот, и так далее.

— Нанесение меток. Эти роботы могут присваивать метки различным элементам среды и взаимодействовать с ними. К примеру, если робот определяет, что некоторая область грязнее обычного, он помечает ее соответствующей меткой и прилагает больше усилий для ее уборки. Пользователь также может отметить зону, в которую робот не должен заходить, и он будет избегать этой зоны.

— Нелинейность. Поведение робота очевидно нелинейно, так как его части в совокупности способны решать намного более важные задачи, чем по отдельности. Мотор, колеса, пылесос и другие элементы робота независимо друг от друга не смогут провести уборку в доме без вмешательства человека, а когда все эти элементы объединены в сложную адаптивную систему, они способны убрать пыль самостоятельно.

— Потоки. Сам робот представляет собой сложную систему управления потоками информации, поступающей из внешней среды. Робот содержит ряд датчиков, которые фиксируют информацию о среде и указывают, что робот находится в особенно загрязненной области или перед ним располагается стена. Вся эта информация поступает в центральный процессор, который анализирует ее и отправляет сигналы различным деталям робота. Детали робота исполняют инструкции, изменяющие исходную среду, из которой изначально поступают сигналы. Если робот обнаруживает загрязненный участок, его процессор повышает мощность всасывания, а если робот сталкивается с препятствием, то процессор может дать указание совершить разворот.

— Разнообразие. Если робот наталкивается на препятствие, то ищет способы обойти его. Разнообразие заключается в том, что робот обходит препятствия по-разному — он постоянно чередует способы обхода, чтобы снизить вероятность попадания в бесконечный цикл.

— Внутренние модели. Робот содержит ряд неявных внутренних моделей: в начале работы он движется случайным образом, а по мере знакомства с территорией сосредотачивает внимание на особо пыльных участках.

— Строительные блоки. Роботы-пылесосы в своих внутренних моделях используют строительные блоки. К примеру, если робот сталкивается со стеной, он пытается обойти препятствие, затем понимает, что обойти стену нельзя, и применяет иную стратегию. Робот-пылесос не обучен адаптировать подобное поведение ко всем возможным типам стен или препятствий, напоминающих стены, он использует строительный блок под названием «стена» и при столкновении с ним следует определенной стратегии.

Эпилог

Предсказывать очень трудно. Особенно будущее.

Нильс Бор

Дочитав книгу до конца, читатель должен был получить некоторое представление о том, что является реальностью, а что — вымыслом в научно-фантастических рассказах, романах и фильмах, в которых часто изображаются мыслящие человекоподобные машины.

Сегодня искусственный интеллект представляет собой не более чем набор передовых средств, позволяющих быстро находить приближенные решения сложных задач на основе накопленного опыта, подобно тому, как это делает человек. Иногда подобные алгоритмы, которые стали доступны нам благодаря современной науке и технике, не чужды инновационного подхода и творчества. Однако машины, которые можно спутать с человеком, появятся еще не скоро, даже в тех областях, где исследователям удалось добиться наибольших успехов. И все же каждый день мы, сами того не осознавая, взаимодействуем с различными системами и устройствами, реализующими интеллектуальные алгоритмы, — это и системы управления европейскими поездами, и системы очистки сточных вод в большинстве крупных городов, и системы перевозок миллионов тонн грузов по планете.

Поделиться:
Популярные книги

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам