Разум, машины и математика. Искусственный интеллект и его задачи
Шрифт:
Нейронная сеть. Математическая модель, представляющая собой сеть искусственных нейронов, которые можно обучить для решения задач классификации. Нейронные сети имитируют поведение нервной системы живых существ, также состоящей из обученных нейронов.
Переобучение. Переобучение наблюдается в случае, когда алгоритм классификации в результате обучения оказывается не способным обобщать и может лишь запоминать. При переобучении алгоритм способен корректно классифицировать только выборки, запомненные во время обучения. Переобучение обычно происходит в случае,
Разнообразие. Понятие, рассматриваемое в эволюционных вычислениях для определения генетической изменчивости популяции (множества предложенных решений) эволюционного алгоритма и ее эволюции с течением времени. Изучение генетического разнообразия крайне важно для определения оптимальной конфигурации алгоритма, результатом которой будет не локальный, а глобальный оптимум.
Роевой интеллект. Сложная искусственная система, используемая для решения определенных задач. Суть роевого интеллекта — программирование автоматов особым образом, позволяющим наделить их примитивным «интеллектом».
Универсальная вычислительная машина. Устройство, способное выполнить любой алгоритм. Универсальная вычислительная машина — математическая абстракция, позволяющая доказать, что в новом языке программирования или электронном устройстве можно реализовать все функции, необходимые для его использования.
Эволюционные вычисления. Дисциплина, изучающая эволюционные алгоритмы, их оптимальную конфигурацию и способы применения для решения задач. См. также Эволюционный алгоритм.
Эволюционный алгоритм. Метод поиска и оптимизации, основанный на принципах естественного отбора. В рамках эволюционного алгоритма выдвигаются возможные решения задачи, которые затем оцениваются, и путем сравнения лучших из них определяется оптимальное решение.
Экспертная система. Первые интеллектуальные компьютерные программы, которые представляли собой «экспертов» в той или иной области. Рассуждения этих программ ограничены знаниями, введенными в систему во время программирования. Экспертные системы почти не способны к обу чению по результатам нового опыта, поэтому в настоящее время практически не используются.
Энтропия Шеннона. Математическое понятие, широко используемое в телекоммуникациях для определения «беспорядочности», или энтропии, сигнала. Энтропия Шеннона представляет собой меру, описывающую число различных символов и частоту их появления в сигнале или источнике данных. Также применяется в криптографии и при сжатии данных.
Библиография
CASTI, J.L., El quinteto de Cambridge, Madrid, Taurus, 1998.
GOLDBERG, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Boston, Addison-Wesley, 1989.
—: The Design of Innovation. Lessons from and for Competent Genetic Algorithms, Norwell, Kluwer Academic Publishers, 2002.
HOLLAND, J.H., Adaptation in Natural and Artificial Systemst Cambridge/Londres, MIT Press/Bradford Books, 1992.
—: Emergence. From Chaos to Order, Cambridge, Perseus Books, 1998.
—: Hidden Order. How Adaptation Builds Complexity, Reading, Perseus Books, 1995.
McElreath, R., Robert, B., Mathematical Models of Social Evolution. A Guidefor the Perplexed, Chicago, The University of Chicago Press, 2007.
* * *
Научно-популярное
Выходит в свет отдельными томами с 2014 года
Мир математики
Том 33
Игнаси Белда
Разум, машины и математика.
Искусственный интеллект и его задачи
РОССИЯ
Издатель, учредитель, редакция:
ООО «Де Агостини», Россия
Юридический адрес: Россия, 103066,
г. Москва, ул. Александра Лукьянова, д. 3, стр. 1
Письма читателей по данному адресу не принимаются.
Генеральный директор: Николаос Скилакис
Главный редактор: Анастасия Жаркова
Выпускающий редактор: Людмила Виноградова
Финансовый директор: Наталия Василенко
Коммерческий директор: Александр Якутов
Менеджер по маркетингу: Михаил Ткачук
Менеджер по продукту: Яна Чухиль
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:
в 8-800-200-02-01
Телефон горячей линии для читателей Москвы:
в 8-495-660-02-02
Адрес для писем читателей:
Россия, 600001, г. Владимир, а/я 30,
«Де Агостини», «Мир математики»
Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).
Распространение: