Релятивистская механика: новый взгляд по-старому
Шрифт:
Вообще оказывается, что у расстоянья от нас до галактики, с которой нас Вселенная разносит, роль эквивалентная массе тела, с которым нас Вселенная сносит (Земли, например). Это понятно: и снос и разнос - от одной причины в лице вселенской пространственной разбухаемости, и насколько последнюю - через затрудняемость её - заставляет всё больше работать на снос увеличивающаяся телесная масса, настолько увеличиваемость расстоянья до галактики приводит к обратному: всё больший участок мат. Вселенной начинает работать на наше с нею разнесение, тем естественно и увеличивая его выраженность. Ну, в смысле, оборачиваясь б'oльшим разносительным эффектом - в лице выраженности уносящего ускорения, сообщаемого галактике по отношению к нам.
Сказать иначе, пространственная разбухательность затрудняется явленностью в работе некоего агрегата, предстающего нам телесной массой (ну, фактом имеемости телом массы). Чем выраженней этот агрегат в работе, то есть - чем больше масса у рассматриваемого тела, тем больше затруднена пространственная разбухательность окрест него и оттого больше притяженье им других тел. Увеличенье же расстояния меж нами и некой галактикой являет в работе другой агрегат - так сказать, мобилизацию всё большего мат. вселенского участка к организации нашей с той галактикой разносимости, отчего последняя и оказывается выраженней организована. Что в конечном счёте выливается в большесть абсолютной величины ускорения, ту галактику от нас уводящего.
И для тех, кто до конца не врубился: больший участок пространства работает на разнесение (ну, организует его для нас с рассматриваемой
О числе же "пор" говорили условно. Ведь оно в любом случае бесконечно - что больший участок пространства работает, что меньший. Ибо новое пространство "сочится" сплошняком по всему объёму уже имеющегося пространства, отчего "порой" выступает буквально всякая точка последнего, а даже мало-мальский объём описывается (ну, охватывается, покрывается) бесконечным множеством точек. Но когда работает объём больший, то соответственно больше и мощность бесконечного множества точек, его составляющего, а значит, и задействованных "пор", - вот такая разница.
Но посмотрим на вычислениях, больше ли, как мы заявили, по отношению к нам суперускорение первой степени у более отдалённых галактик - сравнительно с менее отдалёнными. За счёт расстояния между галактиками, имеющими скорости убегания от нас соответственно 285000 км/сек и 295000 км/сек, суперускорение первой степени мы уже вычислили ранее: 0,246 x 10 – 26м/сек 3. Теперь вычислим за счёт расстояния между галактиками со скоростями 275000 км/сек и 285000 км/сек. Сначала узнаем время, за которое галактика на скорости 275045 км/сек проходит дистанцию в 1 мпс. Указанная скорость есть средняя скорость галактики на мегапарсековой дистанции, коль в начале последней скорость её 275000 км/сек, а в конце - 275090 км/сек (то есть на величину постоянной Хаббла больше: именно на такую величину прирастает скорость за мегапарсек галактического хода). Итак, t =1 мпс / v ср= 30,8 x 10 18км / 275045 км/сек = 1,1198 x 10 14сек. И если вышеозначенный прирост скорости (то есть 90 км/сек) разделить на это время, то получим значение ускорения, в достаточной степени представительствующее ускоренческое состояние галактики на том мегапарсеке. Итак, 90 км/сек / 1,1198 x 10 14сек = 90000 м/сек / 1,1198 x 10 14сек = 0,804 x 10 – 9м/сек 2= 0,804 нм/сек 2. Это условно-мгновенное значение ускорения галактики в точке имеемости ею 275000 км/cек скорости по отношению к нам. Аналогично подсчитав ускорение галактики со скоростью убегания 285000 км/сек, получаем 0,833 нм/сек 2. Тогда прирост ускорения галактики между точкой пространства, где её мгновенная скорость 275000 км/сек и точкой, где её мгновенная скорость 285000 км/сек, оказывается 0,833 - 0,804 = 0,029 нм/сек 2. Из первой точки во вторую галактика попадает посредством пройдённости - в направлении от нас - ста одиннадцати мегапарсек расстояния: 285000 км/сек - 275000 км/сек = 10000 км/сек / 90 км/сек•мпс = 111 мпс. Это понятно: коль за пройдённость мегапарсека расстояния галактика увеличивает свою относительно нас скорость на 90 км/сек, то для увеличения скорости на 10000 км/сек ей надо пройти столько мегапарсек, сколько получится от разделения 10000 на 90. А далее то, что расстояние в эти 111 мпс галактика проходит на средней скорости (275000 км/сек + 285000 км/сек) / 2 = 280000 км/сек, откуда время прохода оказывается 111 мпс / 280000 км/сек = 111 x 30,8 x 10 18км / 280000 км/сек = 122,1 x 10 14сек = 387,1 млн лет. Разделив на него определённый выше прирост ускорения, получаем значение суперускорения первой степени: 0,029 нм/сек 2/ 122,1•10 14сек = 0,237•10 – 26м/сек 3. Вывод: убегательное суперускорение первой степени достаточно заметно возросше для галактик в точках, на 111 мпс более удалённых от нас, нежели точки имеемости галактиками скоростей убегания 275000 км/сек – 285000 км/сек, то есть вычисленная конкретика утвердила в числах вообще ожидаемое.
Время, за которое галактика приращивает ускорение с 0,804 нм/сек 2до 0,833 нм/сек 2, можем вычислить и другим способом, чем вычисляли. Поступаем так в задавшести вопросом: а получится ли то же самое значение? Этот другой способ - вычисление на базе формулы a = v/t, отражающей то, что ускорение равно изменению скорости по величине за единицу времени. Здесь a– ускорение, v– изменение скорости, а t– время, за которое это изменение произошло. У нас v= 285000 км/сек - 275000 км/сек = 10000 км/сек, при скорости 275000 км/сек мгновенное ускорение убегающей галактики нашли равным 0,804 нм/сек 2, при скорости 285000 км/сек - равным 0,833 нм/сек 2, то есть среднее ускорение её движения на участке этого приращивания скорости оказывается (0,804 + 0,833) / 2 = 0,8185 нм/сек 2, вот на него и надо разделить прирост скорости, чтобы узнать время заполучения галактикой того прироста (оно же время приращения ею и своего ускорения до 0,833 нм/сек 2). Итак, t = v/a ср = 10000 км/сек / 0,8185 нм/сек 2= 10 7м/сек / 0,8185•10 – 9м/сек 2= 122,2•10 14сек. А подсчёт первым способом дал, как помним, 122,1•10 14сек, - то есть оба способа дают фактически одно значение. Что намекает на достаточную адекватность принципа разводимых нами подсчётов.
Остаётся добавить, что показанное для свободного падения тел на планету - один к одному может быть перенесено на хаббловское разбегание тел. Чт'o показали? Что ежели отпустить тело в какой-либо точке планетной окрестности, то скорость сближения его с планетой прирастает до возможной максимальной не мгновенно - несмотря на пребываемость тела в неограниченном стремлении ту скорость увеличить. Так же "ведёт себя" и относительная скорость хаббловской разбегаемости тел. А значит, и проходимый последними путь - как производное от той скорости. И вот тут спрашивается: если не мгновенно оказываются тела "на разных краях мат. Вселенной", то как, по какому закону? Определить это фактически означает узнать, по какому закону увеличивается мат. Вселенная. Определение такого сводится к определению формулы пути, проходимому одним из тел по отношению к другому телу при обладаемости относительным к нему ускорением. Для случая равноускоренного движения формула пути известна и школьнику: S = at 2 /2.Для движения же на суперускорении мы нашли (по крайней мере, прикидочно!) формулу пути такой: S = a sup • t 3 / 4.И
Но вообще-то наговорено ещё недостаточно. Разводившиеся вычисления оказались способны обернуться весьма крутыми обобщениями. Которые и хочу привести. Чтоб их сделать, понадобилось наработать более точные числовые значения ускорений (сравнительно с достигавшимися нами доселе), и в большем количестве. Они составили следующие ряды. Ряд первый: 0,774482; 0,803703; 0,832925; 0,862143 нм/сек 2. Это ряд "мгновенных" ускорений, которыми - получается!
– обладают по отношению к нам галактики со скоростями убегания соответственно такими: 265000; 275000; 285000 и 295000 км/сек. Суперускорения же первой степени у этих галактик составляют свой ряд: 0,2308•10 – 26; 0,2393•10 – 26; 0,2478•10 – 26м/сек 3(для галактик со скоростью 295000 км/сек суперускорения здесь нет: чтоб посчитать его, потребовалось бы брать ещё одну скоростную точку, ближе - чем точка "295000 км/сек" - лежащую к скорости света).
Что из рядов вытекает? А две новые постоянные! Из первого - 0,02922 нм/сек 2(именно на эту величину отличаются члены ряда друг от друга!), а из последнего - 0,0085•10 – 26м/сек 3(именно на такую - одну и ту же!
– величину тоже отличаются в нём члены). Что за величины? Ну, каждая следующая по скорости галактика ряда отстоит от нас дальше за предыдущую на 111 мпс (как мы подсчитали в исходящести из постоянной Хаббла текущего исторического периода мат. Вселенной). Вот каждые следующие 111 мпс удаления от нас и получаются дающими галактике 0,02922 нм/сек 2добавочного ускорения по отношению к нам, и они же - каждые следующие - добавляют ей 0,0085•10 – 26м/сек 3суперускорения первой степени (опять-таки по отношению к нам). То есть - прямопропорциональный рост в обоих случаях! И в приведённости к 1 мпс удаления это будут соответственно значения 0,0002632 нм/сек 2•мпс и 0,0000765•10 – 26м/сек 3•мпс. Ну, или 0,2632•10 – 12м/сек 2•мпс и 0,765•10 – 30м/сек 3•мпс.
То есть что? Закон Хаббла - это прямопропорциональность скорости убегания галактики расстоянью от неё до нас, где коэффициент пропорциональности равен 90 км/сек•мпс и называется хаббловской постоянной. Но можно и нужно говорить о надставленном законе Хаббла, подобно закону Хаббла касающемуся уже не скоростей убегания от нас галактик, а ускорений их убегания от нас. То есть, говорить о прямопропорциональности ускорений убегания галактик удалённости от нас тех галактик. Где коэффициент пропорциональности равен 0,2632•10 – 12м/сек 2•мпс и напрашивается быть названным суперхаббловской постоянной. Также нужно говорить о вдвойне надставленном законе Хаббла, касающемся суперускорений первой степени у убегающих от нас галактик (и тоже сходно с тем, как касается закон Хаббла скоростей тех галактик). То есть: первая степень суперускорения у убегающей от нас галактики прямопропорциональна степени убежавшести той галактики (как расстояния, на которое она успела отбежать). Коэффициент пропорциональности в этом законе равен 0,765•10 – 30м/сек 3•мпс, и может быть соответственно назван суперхаббловской постоянной второй степени. Читатель может освоенным - надеюсь!
– образом посчитать и суперхаббловскую постоянную третьей степени, и так далее, - то есть открываем бесконечное множество последовательных суперхаббловских постоянных. Первый член коего должен по-полному называться суперхаббловской постоянной первой степени, а закон, в котором он фигурирует, соответственно однонадставленным законом Хаббла.
И напоследок в этой связи вот что. Однажды выше я уже упоминал о выйденности космологов на факт ускоренной разбегаемости галактик. Вышли где-то в конце 90-х, в растерянности и недоверии к полученным данным. Не знаю как вышли, но по зрелому размышлению напрашивается предположить, что разрешение астрофизических методов стало достаточным, чтобы произвесть - в достаточно отстоящие друг от друга моменты времени - прямые замеры скорости убегания одной и той же галактики, и разницу значений не "утопить" в погрешности. Галактика, скорей всего, была одной из весьма удалённых: именно ведь у таких ускорение относительно Земли больше, согласно нашей теории, а стало быть, и заметить его легче... Итак, второй замер дал значение скорости большее, чем первый, а при "разбегаемости галактик по инерции" оно должно бы оставаться прежним. И что же? Подвигло это физиков на логику, подобную нашей? Как бы не так: для объяснения ускоренья у разбега попросту реанимировали эйнштейновскую "ламбду", как вычитал я недавно в одной научно-популярной статье! Ну, акт понятный: вводилась космологическая постоянная Эйнштейном, чтоб "спасти" от схлопнутости рассредоточенное по мат. Вселенной вещество. Схлопнутости, представляющейся должной наступить из-за гравитационных сил меж компонентами того вещества. А когда от этого мат. Вселенную "спас" Хаббл - открыв разбегание галактик, "ламбда" в эйнштейновских уравнениях стала ненужной, и её ввод Эйнштейн назвал "самой большой ошибкой своей жизни". И, однако, что было в теории способно компенсировать силы гравитационного притяжения - в их наличности меж разнесёнными компонентами вселенского вещества, то автоматически оказывается способным теоретизационно наводить ускоренный разнос тех компонентов - если какая-либо другая теоретизационная вводная "берёт на себя" компенсацию сил гравитации меж ними. Естественно, мимо такого не прошли: зачем выдумывать новое, если есть ещё не хорошо забытое старое! Эйнштейн объявлен поторопившимся себя бичевать, "ламбда" реанимирована, и "дело в шляпе". Выбралибран, , то есть, путь наименьшего сопротивления. Именно он у людей – самый любимый, и учёные, как видим, не исключение. Что с этим поделаешь? Как у Высоцкого в песне – "осталось только материться!"