Чтение онлайн

на главную - закладки

Жанры

Революция в микромире. Планк. Квантовая теория
Шрифт:

Заряд электрона

Значение заряда электрона, рассчитанное Планком из отношений между константами излучения черного тела, газовой постоянной и законов электролиза, было близким к значению, принятому сегодня. На новом витке развития науки этому открытию Планка, которое считалось второстепенным, стали придавать больше значения, чем вначале. Эрнест Резерфорд внимательно прочитал статью, в которой Планк представил свою оценку заряда электрона, вычисленную на основе экспериментальной проверки его закона об излучении черного тела.

Эта величина была похожа на результаты прямого измерения электрона, проведенные Резерфордом и несколько расходившиеся

с первой величиной, представленной Дж. Дж. Томпсоном.

Через несколько лет Нильс Бор работал в Манчестере под руководством Резерфорда и дал ему первому прочесть свою еще не опубликованную статью, в которой высказывались идеи о структуре атома. Резерфорд подбодрил Бора, подчеркнув необходимость публиковать статью и продолжать работу, несмотря на то что высказанные идеи не были лишены противоречий и расходились с принципами классической физики. Поддержка со стороны Резерфорда, по его собственному признанию, была связана с тем, что он был изначально уверен в важности идей Планка и чувствовал: так или иначе постоянная h была ключом, открывавшим шкатулку, в которой хранились законы атомного и субатомного мира.

Эрнест Резерфорд.

В других его работах по термодинамике выделяются размышления о значении так называемой теоремы Нернста, которые привели ученого к формулировке третьего начала. В начале века Вальтер Нернст провел серию измерений поглощения и генерирования тепла при различных низкотемпературных химических реакциях. Вследствие этих исследований он сформулировал закон, известный как теорема Нернста: при приближении к абсолютному нулю все процессы развиваются без изменения энтропии. Среди множества других следствий теоремы Нернста можно назвать скрытую в ней невозможность достижения нулевой температуры по шкале Кельвина или абсолютного нуля.

Планк воспользовался квантовой теорией для того, чтобы вывести из теоремы Нернста меру энтропии, и предложил для нее следующую формулировку, сегодня известную как третье начало термодинамики: при абсолютном нуле энтропия химически однородного тела равна нулю.

Единицы измерения вселенной

На излучение черного тела не влияет природа конкретной излучающей полости, оно зависит только от температуры полости. Планк понял, что не только k, но и h — это новые универсальные постоянные. Наряду с известными константами гравитации и скорости света они позволяли построить систему единиц, не зависящую от представлений человека.

Кратко остановимся на том, как образована современная система единиц. Для выражения любой физической величины нам необходимы единицы измерения. Для расстояния в Международной системе измерений (СИ) имеется единица длины — и мы можем сказать, что рост Шакила О’Нила составляет 2,15 метра или что расстояние между Лондоном и Парижем равно 340,55 километра.

Использование метра как единицы измерения длины является условным и принято в результате соглашения, подписанного несколькими странами в мае 1875 года в рамках Метрической конвенции. После этого были изготовлены эталон метра и эталон килограмма, которые вместе с единицей измерения времени — секундой — сформировали так называемую систему единиц МКС (метра, килограмма, секунды). Эту систему используют не все страны. Так, англосаксонские культуры применяют милю, ярд, фут, дюйм в качестве единиц измерения длины, фунт и унцию — для измерения веса (хотя в Англии уже используется килограмм и его кратные в качестве официальной единицы). Любопытен случай США, где используются мили и ярды, хотя это была одна из первых стран, присоединившихся к Метрической конвенции.

Невозможность достигнуть абсолютного нуля

Теорема Нернста и третье начало термодинамики в формулировке Планка подразумевают невозможность достижения абсолютного нуля. Собственно, все три начала термодинамики выражают много разных невозможностей. Согласно первому началу, невозможно создать вечный двигатель первого рода (двигатель, который производит больше работы, чем потребляет энергии). Согласно второму началу, невозможно создать вечный

двигатель второго рода (двигатель, превращающий в работу все передаваемое ему тепло). Третье начало, как мы уже сказали, подразумевает невозможность достижения абсолютного нуля. Несмотря на это одним из самых захватывающих научных вызовов XX века было достижение все более низких температур, а конечной целью было приближение к абсолютному нулю. Пионером низкотемпературных исследований стал Хейке Камерлинг-Оннес (1853-1926), который смог дойти до температуры 3 градуса выше абсолютного нуля. Используя свою криогенную технику, Камерлинг-Оннес получил жидкий гелий и открыл сверхпроводимость. На сегодняшний день удалось получить температуру, превышающую абсолютный нуль Кельвина всего на несколько миллионных долей градуса.

В рамках Метрической конвенции были созданы международные органы, в задачу которых входит актуализация и обновление Международной системы единиц. Так, актуальные определения метра и секунды отличаются от первоначальных. Понятие секунды относится к регулярности атомных явлений и представляет собой «интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия- 133». Это определение связано с технологией самых точных в мире часов — атомных. В основе определения метра, в свою очередь, лежат факт о скорости света как универсальной постоянной и новое сверхточное определение секунды. Определение метра, принятое в 1983 году на Генеральной конференции по мерам и весам, гласит: метр — это длина пути, проходимого светом в вакууме за время, равное 1/299792458 секунды.

Вернемся к Планку. Постоянная Больцмана k измеряется в кг м^2/(с^2К), постоянная Планка h — в кг м^2/с, универсальная гравитационная постоянная G, открытая Ньютоном, — в м^3/кгс^2, скорость света с — в м/с. В 1899 году Планк представил Берлинской академии сообщение, в котором комбинировал эти константы для получения масштабов расстояния, массы, времени и температуры:

Планк отметил, что величины, рассчитанные с помощью универсальных постоянных, не являются антропометрическими. Таким образом, с учетом этой универсальности при отсутствии пространственно-временных изменений любая другая цивилизация, которая начнет раскрывать тайны физики, получит те же величины. Планк писал:

«Эти величины сохраняют свое естественное значение до тех пор, пока справедливы законы тяготения, распространения света в вакууме и оба начала термодинамики, и, следовательно, их измерение должно давать всегда одни и те же результаты, какими бы учеными и какими бы методами они ни были получены».

Макс Планк удивился бы, узнав, что по прошествии более века его натуральные единицы продолжают вызывать и интерес, и споры среди физиков-теоретиков. Дело в том, что планковские единицы напрямую связаны с главной проблемой физики нового тысячелетия — созданием квантовой теории гравитации. В частности, планковская длина указывает длину, ниже значения которой само понятие пространства не имеет смысла.

Попробуем провести один из мысленных экспериментов, которые так нравились Эйнштейну, Бору и Гейзенбергу. Представим, что мы хотим произвести локализацию некоего объекта и направляем на него луч света, измеряя, сколько времени займет его возвращение (примерно так же действует авиационный радар). Волновая природа света устанавливает для нашего эксперимента одно требование: расстояние не может быть меньше длины волны используемого света . В принципе, было бы достаточно уменьшить настолько, насколько нам необходимо, но согласно квантовой теории это приведет к тому, что возбужденные волной фотоны будут иметь меньше энергии, так как Е = hv = hc/.

Поделиться:
Популярные книги

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Ст. сержант. Назад в СССР. Книга 5

Гаусс Максим
5. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ст. сержант. Назад в СССР. Книга 5

Империя на краю

Тамбовский Сергей
1. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Империя на краю

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Кровавые обещания

Мид Райчел
4. Академия вампиров
Фантастика:
ужасы и мистика
9.47
рейтинг книги
Кровавые обещания

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия