Рождение сложности: Эволюционная биология сегодня
Шрифт:
Как мы помним, при бескислородном фотосинтезе донором электрона служат соединения серы (чаще всего сероводород), а в качестве побочного продукта выделяется сера или сульфат. Недавно был открыт вариант бескислородного фотосинтеза, при котором донором электрона служат соединения железа. Побочным продуктом в этом случае являются более окисленные соединения железа. Не исключено, что именно микробы, осуществлявшие "фотоокисление" железа, ответственны за образование древнейших железных руд. Таким образом, существование аноксигенных фотосинтетиков зависит от довольно дефицитных веществ. Поэтому аноксигенный фотосинтез не мог обеспечить производство органики в количестве, необходимом для развития разнообразных гетеротрофов (потребителей органики), включая животных.
При
По сравнению с бескислородным фотосинтезом кислородный фотосинтез — гораздо более сложный процесс. Аноксигенные фототрофы утилизируют солнечный свет при помощи единого белкового комплекса, называемого фотосистемой. Для кислородного фотосинтеза потребовалось введение второго белкового светоулавливающего комплекса — второй фотосистемы. Обе фотосистемы в основных чертах похожи друг на друга (обе содержат хлорофилл, располагаются на клеточной мембране и отчасти состоят из похожих по структуре и функции белков). По-видимому, обе они являются вариациями одной и той же базовой "модели", то есть происходят от единого общего молекулярного "предка". Скорее всего, предки цианобактерий приобрели вторую фотосистему от каких-то других фотосинтезирующих микробов путем горизонтального переноса генов (см. главу "Наследуются ли приобретенные признаки?"). Объединившись в одной клетке, две фотосистемы со временем приспособились друг к другу, специализировались и разделили между собой функции.
Важность сделанного цианобактериями "открытия" трудно переоценить. Без цианобактерий не было бы и растений, ведь растительная клетка — результат симбиоза нефотосинтезирующего (гетеротрофного) одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл — пластид, которые суть не что иное, как симбиотические цианобактерии. И неясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения — всего лишь удобные "домики" для проживания цианобактерий. По сути дела цианобактерии не только изобрели кислородный фотосинтез, но и по сей день сохранили за собой "эксклюзивные права" на его осуществление.
Цианобактерии не только создали биосферу "современного типа". Они и сегодня продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии — одни из немногих живых существ, способных фиксировать атмосферный азот (N2), переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только прокариоты, и то далеко не все.
Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации — нитрогеназы — не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие — покрытые плотной оболочкой гетероцисты — не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).
До недавнего времени ученые полагали, что совместить фотосинтез и азотфиксацию в одной и той же клетке невозможно. Однако новейшие исследования показали, что мы до сих пор сильно недооценивали метаболические способности цианобактерий. Эти микроорганизмы являются еще более универсальными и самодостаточными "биохимическими фабриками", чем было принято считать.
Цианобактерия Synecbococcus в процессе деления. Этот микроб днем фотосинтезирует, а ночью фиксирует атмосферный азот.
В январе 2006 года Артур Гроссман и его коллеги из Института Карнеги (США) сообщили, что живущие в горячих источниках цианобактерии Synecbococcus ухитряются совмещать в своей единственной клетке фотосинтез и фиксацию азота, разделяя их во времени. Днем они фотосинтезируют, а ночью, когда в отсутствии света фотосинтез останавливается и концентрация кислорода в цианобактериальном мате резко падает, переключаются на азотфиксацию. Таким образом удалось выяснить, откуда берут азот микробные маты, живущие при температурах, не пригодных для роста обычных нитчатых азотфиксирующих цианобактерий с гетероцистами. Кроме того, открытие позволяет по-новому взглянуть на древнейшие этапы развития микробной жизни на нашей планете.