Чтение онлайн

на главную

Жанры

Самосознающая вселенная. Как сознание создает материальный мир
Шрифт:

Однако любое макроскопическое тело, в конечном счете, представляет собой квантовый объект; не существует такой вещи, как классический объект, если только мы не готовы признавать порочную дихотомию квантового/классического в физике. Верно, что в большинстве ситуаций поведение макроскопического тела можно предсказывать, исходя из правил классической механики. (В таких случаях квантовая механика дает те же математические предсказания, что и классическая механика, — это принцип соответствия, который открыл сам Бор.) По этой причине мы часто приближенно считаем макроскопические тела классическими. Однако процесс измерения — не такой случай, и принцип соответствия к нему не применим. Разумеется, Бор это знал. В своих знаменитых дебатах с Эйнштейном Бор часто привлекал квантовую механику для описания макроскопических тел при измерении, чтобы опровергать

острые возражения, выдвигавшиеся Эйнштейном против волн вероятности и принципа неопределенности.

В качестве примера спора между Бором и Эйнштейном рассмотрим ситуацию двухщелевого эксперимента, но с одним дополнительным аспектом. Предположим, что до попадания на двойную щель электроны проходят через одиночную щель в диафрагме — ее цель состоит в точном определении начального положения электронов. Эйнштейн предлагал устанавливать эту первую щель на крайне чувствительных пружинах (рис. 24). Он доказывал, что если первая щель отклоняет электрон к верхней из двух щелей, то в силу принципа сохранения импульса первая диафрагма будет отходить вниз, а если электрон отклоняется вниз, к нижней из щелей, то будет происходить противоположное. Таким образом, измерение отдачи диафрагмы будет говорить нам, через какую щель, в действительности, проходит электрон — то есть давать информацию, невозможную с точки зрения квантовой механики. Если бы первая диафрагма действительно была классической, то Эйнштейн был бы прав. Защищая квантовую механику, Бор указывал, что, в конечном счете, эта диафрагма тоже подчиняется квантовой неопределенности. Поэтому при измерении ее импульса становится неопределенным ее положение. Бор был способен продемонстрировать, что это расширение первой щели фактически уничтожает интерференционную картину.

Рис. 24. Идея Эйнштейна: начальная щель на пружинах для двухщелевого эксперимента. Если перед прохождением через перегородку с двумя щелями (не показана) электроны проходят через щель в диафрагме, установленной на пружинах, то можно ли определять, через какую щель проходит электрон, не уничтожая интерференционную картину?

Однако предположим далее, что действует принцип дополнительности и что иногда макроскопический прибор все же приобретает квантовую дихотомию (как показывает спор Бора—Эйнштейна), но что в другие моменты этого не происходит — как в случае с измерительным прибором. Эта оригинальная идея, именуемая макрореализмом, исходит от блестящего физика Тони Леггетта, чья работа привела к созданию великолепного экспериментального устройства под названием SQUID (СКВИД — Сверхпроводящий Квантово-Интерференционный Детектор).

Обычные проводники проводят электричество, но всегда оказывают некоторое сопротивление прохождению электрического тока, что приводит к потере электрической энергии в виде тепла. По контрасту с этим сверхпроводники позволяют току течь без сопротивления. Если вы создали электрический ток в сверхпроводящем контуре, то этот ток будет течь практически вечно — даже без источника энергии [27] . Сверхпроводимость обусловлена особой корреляцией между электронами, распространяющейся по всему сверхпроводнику. Для того чтобы вырваться из этого коррелированного состояния, электронам требуется энергия, и потому такое состояние относительно невосприимчиво к беспорядочному тепловому движению, присутствующему в обычном проводнике [28] .

27

Конечно, при условии, что энергия не рассеивается в форме магнитного поля. — Прим. пер.

28

В большинстве случаев явление сверхпроводимости наблюдается при крайне низких температурах (вблизи 273° К, или «абсолютного нуля»), когда хаотическое тепловое движение практически отсутствует. — Прим. пер.

СКВИД представляет собой кусок сверхпроводника с двумя отверстиями, которые почти соприкасаются в точке, именуемой «слабым

звеном» (рис. 25). Предположим, мы создаем ток в контуре вокруг одного из отверстий. Ток создает магнитное поле, точно так же, как любой электромагнит, и силовые линии магнитного поля проходят через отверстие — это тоже обычное явление. В случае сверхпроводника, необычное заключается в том, что магнитный поток — число силовых линий на единицу площади — является квантованным; магнитный поток, проходящий через отверстие, дискретен. Это дало Леггетту его ключевую идею.

Рис. 25. Будет ли линия потока делиться между двумя отверстиями, показывая квантовую интерференцию на макроскопическом уровне?

Предположим, что мы создаем настолько малый ток, что имеется только один квант потока. Тогда мы создали ситуацию двухщелевой интерференции. Если есть только одно отверстие, то очевидно, что квант может быть где угодно в нем. Если звено между двумя отверстиями будет слишком толстым, то поток будет локализован только в одном отверстии. Можно ли при подходящем размере слабого звена создать квантовую интерференцию, чтобы квант потока был нелокализованным, находясь в обоих отверстиях одновременно? Если да, то квантовые когерентные суперпозиции явно сохраняются даже на уровне макроскопических тел. Если никакой такой делокализации не наблюдается, то мы можем сделать вывод, что макроскопические тела действительно являются классическими и не допускают когерентных суперпозиций в качестве своих разрешенных состояний.

До сих пор нет никаких свидетельств нарушения квантовой механики в случае СКВИДа, но Леггетт упорно ожидает краха квантовой теории. На недавней конференции он говорил: «Но временами, когда ярко светит полная луна, я делаю то, что в физическом сообществе может быть интеллектуальным эквивалентом превращения в оборотня: я задаюсь вопросом, является ли квантовая механика полной и окончательной истиной о физической вселенной... Я склонен считать, что в каком-томесте между атомом и человеческим мозгом она [квантовая механика] не только может, но должнатерпеть крах».

Он говорил как подлинный материальный реалист!

Многие физики чувствуют склонность задавать те же вопросы, которые вдохновляют Леггетта, так что исследования со СКВИДом продолжаются. Я подозреваю, что однажды они дадут свидетельства в пользу квантовой механики и покажут, что квантовые когерентные суперпозиции явно присутствуют даже в макроскопических телах.

Если мы не отрицаем, что, в конечном счете, все объекты приобретают квантовую дихотомию, тогда, как впервые доказывал фон Нойманн, если цепочка материальных механизмов измеряет квантовый объект в состоянии когерентной суперпозиции, все они по очереди приобретают дихотомию объекта, до бесконечности (рис. 26). Как выбраться из тупика, который создает цепочка фон Нойманна? Ответ поразителен: выскакивая из системы, из материального порядка реальности.

Рис. 26. Цепочка фон Нойманна. В соответствии с доказательством фон Нойманна, даже наш мозг-ум заражается дихотомией кошки, так что каким же образом заканчивается цепочка?

Мы знаем, что наблюдение сознательным наблюдателем прекращает дихотомию. Поэтому совершенно очевидно, что сознание должно действовать извне материального мира; иными словами, сознание должно быть трансцендентным — нелокальным.

Парадокс Рамачандрана

Если вас все еще беспокоит трансцендентность сознания, то вы, возможно, получите удовольствие от рассмотрения парадокса, который придумал нейрофизиолог Рамачандран.

Предположим, что благодаря некой супертехнологии можно записывать с помощью электродов или чего-то такого все, что происходит в мозгу, когда на него действуют внешние стимулы. Вы можете вообразить, что исходя из этих данных и с помощью некой сверхматематики вы можете получить полное и подробное описание состояния мозга в ситуации действия данного стимула.

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Последний рейд

Сай Ярослав
5. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Последний рейд

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III