Самые знаменитые головоломки мира
Шрифт:
33. Существует только один способ выполнить данное задание за 14 поворотов, хотя с еще одним лишним поворотом таких способов будет тысяча и один.
34. Объединенная «тяга» четырех тучных парней в точности равна тяге пяти пышных сестер. Поскольку на втором рисунке показано, что пара тощих близнецов равна по силе одному тучному парню и двум пышным девицам, мы можем упростить задачу, заменив на третьем рисунке двух тощих близнецов их «тяговым эквивалентом», то есть поставив вместо них толстого парня и двух пышных девиц.
Теперь у нас пять пышных сестер и один тучный парень противостоят одной пышной девице и четырем тучным парням.
35. Можно представить себе, что объем, заключенный внутри мяча, разбит на огромное число узеньких пирамид, все вершины которых расположены в центре мяча, а основания лежат на его поверхности. Мы знаем, что объем пирамиды равен произведению площади ее основания на 1/3 высоты. Следовательно, объем шара равен сумме площадей оснований пирамид, то есть сферы, умноженной на 1/3постоянной высоты (радиуса). Поскольку объем шара численно равен площади сферы, отсюда следует, что 1/3 радиуса равна 1. Значит, радиус футбольного мяча равен 3, а его диаметр – 6 дюймам. [26]
26
Представление объема шара в виде суммы объемов пирамид справедливо лишь приближенно. Чтобы соответствующее равенство стало точным, необходимо совершить предельный переход, чем и будет обоснован ответ, приведенный автором. – Прим. перев.
36. Озеро содержало ровно 11 акров; ответ «около 11 акров» не достаточно правилен. Точный ответ получается с помощью известной теоремы Пифагора, утверждающей, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.
На рисунке у треугольника ABDдлина катета ADравна 9, а длина BD– 17, поскольку 9 x 9 + 17 x 17 = 370, что составляет площадь наибольшего поля. АЕС– прямоугольный треугольник, а равенство 5 2+ 7 2= 74 показывает, что квадрат со стороной АСимеет площадь в 74 акра. CBF– также прямоугольный треугольник. Складывая квадраты его катетов, мы находим, что квадратное поле со стороной ВСимеет площадь, разную 4 2+ 10 2=116 акрам. Площадь нашего исходного треугольника ABD,очевидно, составляет половину от 9 x 17, то есть равна 76,5 акра. Поскольку суммарная площадь прямоугольника DECFи двух прямоугольных треугольников АЕСи CBFравна, как легко подсчитать, 65,5 акра, то, вычитая эту величину из 76,5, мы находим, что площадь треугольного озера составляет в точности 11 акров.
37. Решения показаны на рисунках.
38. После замужества три невесты стали носить имена: Китти Браун, Нелли Джонс и Минни Робинсон, Китти весила 122, Нелли – 132, а Минни – 142 фунта.
39. Каждый камень в сережках весил 5 каратов, так что стоил он 2500 долларов, а цена обоих камней составляла 5000 долларов. Вес камней различной величины составил соответственно 1 карат (100 долларов) и 7 каратов (4900 долларов), а их суммарная стоимость также равна 5000 долларов.
40. В наилучшем решении требуется провести всего лишь два прямых разреза и перевернуть одну часть другой стороной
Не играет роли, если угол, образованный отрезком BDсо стороной доски, окажется более или менее острым. Нужно просто провести прямую из середины левой стороны доски Ев середину BD.Затем следует опустить перпендикуляр из угла Gна ЕС.Перевернув теперь часть Адругой стороной кверху, можно сложить квадрат, как показано на рисунке.
41.
42. Разговор происходил в 9 ч 36 мин утра. Одна четверть времени, прошедшего с полуночи до момента разговора, равна 2 ч 24 мин, а половина времени от момента разговора до полуночи составляет 7 ч 12 мин; в сумме как раз и получается 9 ч 36 мин.
Если бы Мак-Гуир не пожелал Клэнси доброго утра (это указывает на то, что разговор происходил до полудня), то правильным ответом могло быть в равной мере и 7 ч. 12 мин. вечера.
43. Если минутная стрелка движется в 12 раз быстрее часовой, то они сливаются 11 раз в течение каждого 12-часового периода. Приняв одиннадцатую часть 12 ч за нашу основную константу, мы находим, что слияние стрелок будет происходить через каждые 65 5/11 мин, или через каждые 65 мин 27 3/11 с. Следовательно, в следующий раз стрелки сольются в 1 ч 5 мин и 27 3/11 с.
Ниже приведены моменты 11 слияний стрелок в течение каждого 12-часового периода.
12 ч 00 мин 00 с
1 ч 05 мин 27 3/11 с
2 ч 10 мин 54 6/11 с
3 ч 16 мин 21 9/11 с
4 ч 21 мин 49 1/11 с
5 ч 27 мин 16 4/11 с
6 ч 32 мин 43 7/11 с
7 ч 38 мин 10 10/11 с
8 ч 43 мин 38 2/11 с
9 ч 49 мин 05 5/11 с
10 ч 54 мин 32 8/11 с
[Теперь, когда вы освоились с техникой решения задач такого типа, вы можете попытаться решить следующую, по-видимому, более трудную головоломку. Предположим, что у часов – три стрелки, слившиеся в полдень. Третья стрелка, конечно, секундная. Когда в следующий раз сольются три стрелки?
На самом деле с помощью приведенной выше таблицы и некоторой проницательности задача решается гораздо легче, чем может показаться на первый взгляд. – М.Г.]
44. Черные бумажные кусочки – это не более чем ловушка. Их следует сложить таким образом, чтобы в центре получилась маленькая белая лошадь, как показано на рисунке.
Именно этот трюк с белой апингтонской лошадью сделал популярным выражение: «О, но это же лошадь другой масти!»
45. Всего было три полностью слепых змея и три змея полностью зрячих.
46. Существует много простых способов выполнить задание за 15–18 ходов, но план, приведенный на рисунке, где мы возвращаемся в исходную точку через 14 ходов, кажется наилучшим возможным ответом.
47. Решая задачу с ожерельем, всякий ювелир, так же как и 99 человек из 100, предложит распилить маленькие звенья на концах всех частей, что снизит цену всей работы до 1 доллара 80 центов. Однако правильным будет распилить все 10 звеньев в тех двух маленьких кусочках, которые состоят из пяти звеньев и содержат по 3 маленьких и 2 больших звена. Этими десятью звеньями можно соединить остальные части в замкнутое ожерелье. Стоимость всей работы окажется тогда равной 1 доллару 70 центам, что совпадает с наименьшим возможным ответом.