Шерлок Холмс в наши дни
Шрифт:
Наряду с этими важными и часто применяемыми физико-химическими методами исследований существует и множество других. Среди них ультрафиолетовая абсорбционная спектроскопия (для получения характеристик растворов и газовых смесей), атомная абсорбция (для количественного определения следов металлов), уже упоминавшейся ранее нейтронно-активационный анализ. Последний крайне чувствительный метод позволяет установить наличие миллиардной части грамма вещества и, в отличие от спектрального анализа, не разрушает это вещество. Чаще всего данный метод используется для установления следов мышьяка и таллия в волосах, а также для идентификации следов металлизации.
В ряде случаев для установления характера вещества и проведения сравнительных исследований перечисленные
Увеличение в 50 000 раз с помощью растрового электронного микроскопа
До сих пор, перечисляя методы исследований, применяемые в криминалистической технике, автор не назвал растровый электронный микроскоп и рентгено-флюоресцентный анализ. Сделано это специально, так как дальше эти методы, как особо эффективные, описываются более подробно.
Как уже говорилось, микроскопия как метод чаще всего используется при криминалистических исследованиях. Почти каждый детальный осмотр объекта начинается с его изучения под микроскопом. При этом главным образом изучается поверхность объекта, исследуются имеющиеся на нем наслоения, проводятся сравнения различных мелких следов. Нужное для этих целей четкое увеличенное изображение получают не только с помощью оптической системы, но и в значительной степени с помощью источника освещения объекта. На практике обычно работают с увеличением не более чем в 200 раз. При большем увеличении освещение обычно становится недостаточным, усилить же его не позволяют допустимые границы нагрева препарата. Кроме того, при большем увеличении падает глубина резкости и четко различимыми становятся лишь небольшие части изучаемого объекта. Достижение нужной глубины резкости при изучении неровных поверхностей - одна из главных проблем в использовании световых микроскопов.
Давно уже появились электронные микроскопы, однако их применение в криминалистике сдерживалось тем, что они не позволяли непосредственно наблюдать поверхность объекта, к тому же для получения его изображения требовалось довольно много времени.
В последние годы была разработана совершенно иная техника электронной микроскопии, а именно - растровый электронный микроскоп, позволяющий получать изображение поверхности исследуемого объекта на экране, сходном с экраном телевизора. Это изображение можно затем сфотографировать. Специальной обработки исследуемого образца, как в обычном электронном микроскопе, здесь не требуется. Возможно 50 000-кратное увеличение объекта, однако можно увеличить и лишь в 20 раз, что очень важно для специфики криминалистических исследований. При этом глубина резкости в 500 раз выше, чем в световом микроскопе, что позволяет получить не плоскостное, а объемное изображение поверхности объекта.
Соединение возможности очень большого увеличения с огромной глубиной резкости позволяет исследовать микроследы, совершенно неразличимые при наблюдении в обычном световом микроскопе. Исследование структуры этих микроследов в ряде случаев даже позволяет определить их химический состав. Подобные криминалистические исследования, если им предшествовал тщательный и продуманный поиск следов на месте происшествия и на осматриваемых предметах, очень эффективны.
Однако растровый электронный микроскоп не полностью заменяет световой, так как с помощью РЭМ можно изучать лишь объекты размером не более 100 х 50 х 50 мм и изображение в нем не цветное, а черно-белое.
Комиссар "Растр"
Приведенные ниже примеры показывают возможности использования в криминалистике растрового электронного микроскопа.
При расследовании автопроисшествий часто важно для определения виновности водителя установить состояние осветительных приборов в момент аварии, т.е. было ли включено освещение и какое - близкое или дальнее. Исследование электроламп позволяет во многих случаях решить этот вопрос. Если удар по автомашине пришелся вблизи фары и был резким, то горящая нить накаливания в лампочке характерно деформируется. Если же лампочка не горела, то такая деформация не наступает. При нерезком ударе, а также у довольно толстой спирали деформация может не наступить, при этом характер удара легко определяется в результате осмотра автомашины и имеющихся па ней повреждений. Если же от сотрясения спираль сломалась, то горела ли в этот момент лампочка - можно определить совершенно точно. Если ломается спираль, находящаяся под напряжением, в месте разлома на очень короткое время возникает вольтова дуга и концы обломков оплавляются. Правда, следы оплавления могут быть очень незначительными. Но если лампочка не горела, таких следов нет вообще. Установить незначительные следы оплавления с помощью светового микроскопа часто невозможно из-за малой глубины резкости и недостаточности увеличения. При использовании же растрового электронного микроскопа, с присущими ему большой глубиной резкости изображения и значительным увеличением, следы оплавления становятся заметными, причем их можно задокументировать фотографическим путем.
Нередко задачей криминалистической техники является исследование частиц красителя при изучении следов взломов, а также при расследовании автопроисшествий, особенно если водитель с места аварии скрылся. В этом случае даже мельчайшие следы красителя, имеющиеся на следоносителе, должны сравниваться с лакокрасочным покрытием автомашины, которая предположительно могла участвовать в происшествии. Здесь наряду с микроскопией показал себя эффективным рентгено-флюоресцентный спектральный анализ, позволяющий практически без повреждений исследовать мельчайшие частицы красителя толщиной лишь в одну тысячную миллиметра.
На стоянке одной фабрики была сильно повреждена автомашина красного цвета. В результате расследования был установлен автопогрузчик, работавший какое-то время вблизи этой стоянки. На одном из металлических ящиков, которые он перевозил, были обнаружены слабо заметные следы красной краски. Визуальное сравнение лакокрасочного покрытия автомашины и следов краски на ящике показало их сходство. Однако рентгено-флюоресцентный анализ и растровая электронная микроскопия установили их различие: один краситель был изготовлен на основе кадмия, а другой на основе свинца. Этот вывод исключал вину водителя автопогрузчика.
Приведенный пример характеризует лишь небольшую часть возможностей растровой электронной микроскопии в сочетании с другими аналитическими методами исследований. Помимо исследования красителей и спиралей лампочек накаливания эти приборы и методы применяются для идентификации мельчайших осколков стекла, частиц металла, камня, человеческих выделений, для изучения следов выстрела и взрывов и многого другого. Часто другие методы нужной информации дать не могут, вот почему в настоящее время криминалистическая техника без применения растрового электронного микроскопа и рентгено-флюоресцентного спектрального анализа просто немыслима.
Сколь малые по размеру следы могут быть исследованы с помощью упомянутых методов, показывает также следующий пример.
В квартире одного подозреваемого было обнаружено несколько пачек денежных купюр. Требовалось установить, не находились ли эти деньги в сейфе, вскрытом автогеном при хищении. В результате исследования под обычным микроскопом на некоторых купюрах были обнаружены мельчайшие коричневые пятнышки, которые могли быть следами воздействия каких-то очень горячих частиц. Обнаруженные пятнышки были изучены с помощью растрового электронного микроскопа, и выяснилось, что это внедрившиеся в бумагу мельчайшие капельки расплавленного металла, которые могли возникнуть при вскрытии сейфа. При дальнейшем изучении этих частиц удалось установить, что они - результат использования автогенной, т.е. газовой, резки, а не электрической. Не удалось, правда, установить, что обнаруженные частицы происходили от данного конкретного сейфа, однако наличие указанных следов и их характеристика явились важными звеньями в цепи доказательств по данному делу.