Чтение онлайн

на главную

Жанры

Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:

Принципы и закономерности, благодаря которым физика является строгой и предсказательной дисциплиной, проявятся, только если вы будете снова и снова проводить этот эксперимент со 100 электронами. Проделав это, вы обнаружите следующее. В первой серии из 100 измерений 27 процентов электронов окажутся вблизи нижнего левого угла, 48 процентов вблизи верхнего правого угла и 25 процентов где-то в середине. Вторая серия измерений даст примерно такое же распределение. Аналогично с третьей серией, четвёртой и всеми последующими. Закономерность распределения не видна в отдельно взятом измерении; вы не сможете предсказать, где окажется отдельно взятый электрон. Наоборот, закономерность проявляется в статистическом распределении результатов многих измерений. Она состоит в определённой вероятности обнаружить электрон в том или ином положении.

Впечатляющее достижение основателей квантовой механики состояло

в развитии математического формализма, в котором отсутствовали абсолютные предсказания, характерные для классической физики, а вместо них появились вероятности. С помощью уравнения, опубликованного Шрёдингером в 1926 году (эквивалентное, но менее удобное уравнение было получено в 1925 году Гейзенбергом), физики умеют задавать начальное состояние вещей, а затем вычислять вероятность того, что они окажутся в одном состоянии или в другом в любой последующий момент времени.

Но не думайте, что всё так элементарно, как в простом примере с электроном. Квантовая механика применима не только к электронам, но и ко всем типам частиц, и предсказывает не только их положения, но также скорости, угловые моменты, энергии, а также поведение в разных ситуациях, от потока нейтрино, пронизывающих в данный момент ваше тело, до бурных атомных реакций в оболочках далёких звёзд. В таком широком диапазоне явлений вероятностные предсказания квантовой механики согласуются с экспериментальными данными. Всегда. В течение более чем восьмидесяти лет с того момента, как была сформулирована квантовая механика, не появилось ни одного проверяемого эксперимента или астрофизического наблюдения, результаты которых расходились бы с квантово-механическими предсказаниями.

Для целого поколения физиков столкнуться с таким радикальным отходом от интуитивных представлений, основанных на тысячелетнем коллективном опыте, и при этом переосмыслить окружающую нас реальность в рамках совершенно нового подхода, основанного на вероятностях, несомненно явилось поистине великим интеллектуальным достижением. Однако была одна неудобная мелочь, что досаждала квантовой механике с самого момента её возникновения — та самая мелочь, которая проложила путь в мир параллельных вселенных. Для её понимания нам понадобится чуть более подробно познакомится с квантовым формализмом.

Головоломка с альтернативами

В апреле 1925 года во время одного эксперимента в лаборатории Белла, проводимого двумя американскими физиками, Клинтоном Дэвиссоном и Лестером Джермером, стеклянная трубка с раскалённым кусочком никеля внутри неожиданно взорвалась. Дэвиссон и Джермер потратили много дней, облучая образец никеля потоками электронов с целью изучения атомных свойств металлов, и выход из строя оборудования был очень некстати, хотя такие помехи вполне привычны для экспериментатора. Убирая стеклянные осколки, Дэвиссон и Джермер заметили, что во время взрыва кусочек никеля потускнел. Ничего страшного, конечно же. Для восстановления образца его надо было прокалить, чтобы испарились загрязняющие вещества, после чего можно было начинать заново. Так они и поступили. То, что они решили очистить старый образец, а не взять новый, стало счастливой случайностью. Когда они направили пучок электронов на очищенный образец, полученные результаты разительно отличались от того, что они ожидали. К 1927 году стало понятно, что Дэвиссон и Джермер установили важнейшее свойство квантовой теории. Спустя десять лет это открытие было удостоено Нобелевской премии.

Хотя эксперимент Дэвиссона и Джермера был проведён так давно (до появления звукового кино и до начала Великой депрессии в США), он по-прежнему широко применяется для иллюстрации основных идей квантовой теории. Эксперимент объясняется следующим образом. Когда Дэвиссон и Джермер накалили загрязнённый образец, в никеле образовались довольно крупные кристаллы. Поэтому поверхность образца никеля перестала быть однородной, и электронный пучок стал рассеиваться на неоднородностях, порождённых местонахождением больших никелевых кристаллов. Чтобы прояснить самые существенные физические закономерности этого явления, рассмотрим упрощённую версию этого эксперимента, изображённую на рис. 8.1. Пучок электронов падает на пластинку с двумя узкими щелями. Электроны, прошедшие сквозь одну или другую щель, подобны электронам, рассеивающимся на одном кристалле никеля или на соседнем. С помощью этой модели Дэвиссон и Джермер осуществили первый вариант того, что теперь называется экспериментом с двумя щелями.

Рис. 8.1. Суть эксперимента Дэвиссона и Джермера можно передать в опыте «с двумя щелями», где электронами облучают пластинку с двумя узкими щелями. В эксперименте Дэвиссона и Джермера два потока электронов возникают при рассеянии электронов на двух соседних кристаллах никеля; в эксперименте с двумя щелями два аналогичных потока порождаются электронами, прошедшими сквозь соседние щели

Чтобы понять этот потрясающий результатом, представьте, что одна из щелей закрыта, а прошедшие электроны фиксируются поочерёдно на экране детектора. После облучения большим количеством электронов экран детектора будет выглядеть как на рис. 8.2а или 8.2б. Разумный человек, не знакомый с квантовыми рассуждениями, ожидал бы, что картинка, которая появится, когда открыты обе щели, будет простым объединением этих двух результатов. Поразительно, но такого не происходит! Вместо этого Дэвиссон и Джермер обнаружили то, что примерно показано на рис. 8.2в. Возникающая картинка состояла из светлых и тёмных полос, указывающих на места попадания или непопадания электронов.

Рис. 8.2.а) Открыта только левая щель; б) Открыта только правая щель; в) Открыты обе щели

Этот результат отличается от ожидаемого самым странным образом. Тёмные полосы соответствуют местам обильного попадания электронов, когда открыта только правая или только левая щель (яркие области на рис. 8.2а и 8.2б), но они, оказывается, исчезают, когда открыты две щели. Таким образом, наличие левой щели изменяет возможные места попадания электронов, прошедших через правую щель, и наоборот. Это совершенно сбивает с толку. Для таких крохотных частиц, как электрон, расстояние между щелями огромно. Поэтому когда электрон проходит сквозь одну из щелей, то каким образом наличие или отсутствие другой щели может привести к хоть какому-то эффекту, не говоря уже о наблюдаемой поразительной картинке? Это похоже на то, как если бы вы в течение многих лет успешно заходили в здание, где работаете, через одну дверь, а когда руководство, наконец, решило сделать ещё один вход с другой стороны здания, то вы не смогли бы попасть в свой кабинет!

Как это понять? Эксперимент с двумя щелями неизбежно приводит к заключению, которое трудно осознать. Независимо от того, через какую щель прошёл электрон, он каким-то образом «знает» о существовании другой щели. Есть что-то, связанное с электроном, или сопоставляемое с ним, или являющееся его частью, на что влияют сразу две щели.

Что бы это могло быть?

Квантовые волны

Как можно объяснить, что электрон, проходящий сквозь одну щель, «знает» о другой? В качестве подсказки рассмотрим более подробно картинку, показанную на рис. 8.2в. Эта картинка с чередующимися полосами по типу «светлая — темноватая — тёмная» хорошо знакома любому физику. Она говорит нам — нет, она кричит — волны! Если вы когда-нибудь бросали в воду два камешка и потом наблюдали, как возникающие волны разбегаются и накладываются друг на друга, вы поймёте, что я имею в виду. Там, где гребень одной волны накладывается на гребень другой, результирующая волна высока; там, где впадина одной волны совпадает со впадиной другой волны, также впадина и у результирующей волны; но самое главное происходит, когда гребень одной волны пересекается со впадиной другой волны — тогда волны гасят друг друга и поверхность воды остаётся гладкой. Всё это проиллюстрировано на рис. 8.3. Если бы мы положили экран детектора на картинку, на которой отражён уровень волнения в каждой точке — чем сильнее волнение, тем ярче, — то результат предстал бы на экране в виде чередующихся ярких и тёмных областей. Там, где волны усиливают друг друга, что приводит к повышению уровня воды, находятся яркие области; тёмные области соответствуют самому низкому уровню воды там, где волны гасят друг друга. Физики говорят, что накладывающиеся волны интерферируют друг с другом, и называют чередование тёмных и светлых полос интерференционной картиной.

Рис. 8.3. Когда две волны на поверхности воды накладываются, они «интерферируют», образуя чередование областей с большим и меньшим волнением, что называется интерференционной картиной

Сходство с рис. 8.2в совершенно очевидно, поэтому глядя на данные по рассеянию электронов, мы начинаем думать о волнах. Хорошо. Это уже кое-что. Но детали происходящего по-прежнему остаются неясными. Что за волны? Откуда они? И как они связаны с частицами, такими как электроны?

Поделиться:
Популярные книги

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Дядя самых честных правил 7

Горбов Александр Михайлович
7. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 7

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Мимик нового Мира 11

Северный Лис
10. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 11

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14