Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:
Следующую подсказку даёт эксперимент, о котором я упомянул вначале. Собранные данные о движении частиц показывают, что полученные закономерности носят исключительно статистический характер. Проведя точно такие же измерения над идентично приготовленными частицами, мы увидим, что частицы, вообще говоря, окажутся в других местах; однако проведя большое количество таких измерений, мы обнаружим, что частицы в среднем обладают одинаковой вероятностью оказаться в любом заданном месте. В 1926 году немецкий физик Макс Борн, собрав воедино эти две подсказки, выдвинул неожиданную идею, которая спустя почти три десятилетия привела его к Нобелевской премии. Итак, есть экспериментальное подтверждение, что волны здесь как-то при чём. Есть экспериментальное подтверждение, что и вероятность здесь как-то при чём. Возможно, предположил Борн, волна, связанная с частицей, является волной вероятности.
Это была поразительно оригинальная
Для уточнения картины рассмотрим, как это объясняет данные эксперимента с двумя щелями. Квантовая механика говорит нам, что движение электрона по направлению к пластинке на рис. 8.2в следует считать бегущей волной, как на рис. 8.4. Когда волна падает на пластинку, из щелей выходят два фрагмента волны, которые движутся далее по направлению к экрану детектора. А дальше происходит очень важное явление. Подобно перекрывающимся волнам на поверхности воды, волны вероятности, выходящие из двух щелей, перекрываются и интерферируют, приводя к картине, как на рис. 8.3. Распределение больших и малых значений отражает, согласно квантовой механике, распределение больших и малых вероятностей для положений, в которых может оказаться электрон. Электроны, испущенные друг за другом, дают суммарную картину попаданий, которая согласуется с такой вероятностной картинкой. Большинство электронов попадает туда, где вероятность велика, совсем немного оказывается там, где она мала, и ни одного электрона в тех местах, где вероятность равна нулю. В итоге возникают тёмные и светлые полосы, показанные на рис. 8.2в.{70}
Рис. 8.4. Описание движения электрона с помощью бегущей волны вероятности объясняет загадочный интерференционный узор в эксперименте с двумя щелями
Именно так квантовая теория объясняет полученные данные. То, что каждый электрон действительно «знает» о двух щелях, становится при таком описании явным, поскольку волна вероятности каждого электрона проходит сквозь обе щели. Именно объединение двух таких парциальных волн определяет вероятность того, куда попадёт электрон. Именно поэтому само наличие второй щели влияет на конечный результат.
Мы рассмотрели детально электроны, однако похожие эксперименты подтвердили, что такое же вероятностно-волновое описание справедливо для всех элементарных объектов в природе. Фотоны, нейтрино, кварки — любые фундаментальные частицы — все они описываются волнами вероятности. Но прежде чем праздновать победу, следует разрешить три неотложных вопроса. Два из них не вызывают затруднений. А один — весьма крепкий орешек. Именно последний вопрос рассматривал Эверетт в 1950-х годах, что привело его к квантовой версии параллельных миров.
Во-первых, если квантовая теория верна и мир развивается вероятностно, тогда почему невероятностный подход Ньютона так хорошо предсказывает движение тел, от бейсбольных мячей до планет и звёзд? Ответ на этот вопрос такой: волны вероятности для крупных объектов, как правило (но не всегда, как мы скоро убедимся), имеют очень специальный вид. Как показано на рис. 8.5а, у них очень узкий профиль, что означает огромную вероятность — чуть менее 100 процентов, — что объект будет находиться в точке самого пика волны, и совершенно ничтожную вероятность, чуть более 0 процентов, что он окажется где-то в другом месте.{71} Более того, квантовые законы показывают, что пики таких узких волн движутся по траекториям, которые возникают из уравнений Ньютона. Поэтому квантовая теория лишь минимально уточняет ньютоновские законы, задающие точную траекторию бейсбольного мяча, говоря, что существует почти 100-процентная вероятность падения мяча в место, вычисленное на основе уравнений Ньютона, и почти 0-процентная вероятность того, что он упадёт в другое место.
На самом деле, слова «чуть менее» и «почти» характеризуют физику не с лучшей стороны. Возможность отклонения движения макроскопического тела от предсказываемого ньютоновскими законами настолько фантастически мала, что если бы вы вели астрономические наблюдения в течение последних нескольких миллиардов лет, то с подавляющей долей вероятности ничего подобного бы не обнаружили. Однако, согласно квантовой механике, чем меньше объект, тем, как правило, более размазана его волна вероятности. Например, типичная волна электрона может выглядеть так, как показано на рис. 8.5б, когда есть несколько местоположений, где частица может находиться с существенной вероятностью, — что совершенно чуждо ньютоновской концепции мира. Поэтому именно в микромире вероятностная природа реальности выходит на первый план.
Рис. 8.5.а) Волна вероятности макроскопического объекта, как правило, имеет очень узкий пик; б) Волна вероятности микроскопического объекта, например частицы, как правило, широко размазана
Во-вторых, можем ли мы видеть волны вероятности, составляющие основу квантовой механики? Существует ли какой-нибудь прямой способ пощупать этот непривычный вероятностный туман, как тот, что изображён на рис. 8.5б, когда единственная частица имеет шанс оказаться во множестве положений? Нет. Из стандартного описания квантовой механики, развитого Бором и его группой и названного в их честь копенгагенской интерпретацией, следует, что если вы захотите увидеть волну вероятности, то сам акт наблюдения разрушит ваши планы. Когда вы смотрите на волну вероятности электрона, то слово «смотрите» означает «измеряете его положение», электрон моментально реагирует на это и занимает какое-то выделенное положение. Соответственно, его волна вероятности поднимается в этом месте до 100 процентов, а во всех остальных коллапсирует до 0 процентов (рис. 8.6). Отвернитесь от него, и пикообразный вид волны вероятности электрона быстро расплывётся, извещая о том, что снова имеется шанс обнаружить электрон во множестве мест. Снова посмотрите на электрон, его волна заново схлопнется, перераспределяясь из множества возможных положений в какое-то одно определённое место. Вкратце говоря, каждый раз, когда вы пытаетесь взглянуть на вероятностный туман, он рассеивается — схлопывается, коллапсирует — и замещается привычной реальностью. Экран детектора на рис. 8.2в демонстрирует как раз это явление: он измеряет падающую волну вероятности электрона, и таким образом немедленно заставляет её схлопнуться. Детектор заставляет электрон отказаться от множества допустимых мест его попадания и определиться с каким-нибудь конкретным местом, которое впоследствии станет крохотной точкой на экране.
Рис. 8.6. Согласно копенгагенскому описанию квантовой механики, при измерении или наблюдении волны вероятности частицы она мгновенно коллапсирует везде, кроме одной точки. Из всего множества возможных местоположений остаётся одно выделенное положение
Я вполне пойму, если такое объяснение заставит вас покачать головой. Спору нет, квантовая догма звучит как шарлатанство. Действительно, предлагается теория, утверждающая совершенно поразительную картину реальности, основанную на волнах вероятностей, после чего буквально сразу заявляющая, что увидеть эти волны нельзя. Представьте, что некая барышня говорит, будто она блондинка, но если кто-то взглянет на неё, то она немедленно становится рыжей. Почему физики согласились с теорией, которая помимо того, что странная, ещё и выглядит откровенно ненадёжной?
К счастью, несмотря на все свои странности и скрытые свойства, квантовая механика является проверяемой теорией. Согласно копенгагенской интерпретации, чем выше волна вероятности в какой-то выделенной точке, тем больше шанс, что при схлопывании волны её единственный оставшийся пик — то есть сам электрон — будет расположен именно там. Такое утверждение обладает предсказательной силой. Проводите какой-нибудь эксперимент снова и снова, подсчитайте, как часто вы обнаруживаете частицы в тех или иных местах, и оцените, согласуются ли наблюдаемые частоты появления частиц с вероятностями, которые задаёт волна вероятности. Если волна в 2,784 раза выше здесь чем там, то будете ли вы в 2,784 раза чаще обнаруживать частицы здесь, чем там? Подобные предсказания оказались невероятно успешными. Какой бы лукавой не выглядела квантовая идея, ей трудно противостоять, когда она показывает такие феноменальные результаты.