Чтение онлайн

на главную

Жанры

Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:

Важно понять, что физикам всегда приходится рассказывать истории с двух сторон. Одна сторона история — математическая — о том, как вселенная развивается согласно данной теории. Другая история — физическая, которая переводит абстрактные математические термины на экспериментальный язык. Вторая история описывает то, как математическая эволюция видится таким наблюдателям, как мы с вами, и, в более общем смысле, что математические символы теории говорят нам о природе реальности.{73} Во времена Ньютона эти две истории в общем и целом были идентичны, как я отмечал в главе 7, когда говорил о непосредственности и осязаемости ньютоновской «архитектуры». Каждый математический символ в уравнениях Ньютона имеет прямой и очевидный физический аналог. Символ x? О, это положение мяча. Символ ? Скорость мяча. Однако когда мы переходим к квантовой механике, перевод математических символов в наблюдаемые явления окружающего нас мира оказывается не столь простым. Более того, используемый язык и понятия, необходимые для двух историй, становятся столь отличными, что вам требуется хорошо разобраться с каждой. Однако важно разделять, что есть что: какие идеи и описания привлекаются как часть фундаментальной математической структуры теории, а какие используются для установления связи с человеческим опытом.

Давайте послушаем эти две истории в случае многомирового подхода к квантовой механике. Вот первая из них.

Математический аппарат многомирового подхода, в отличие от копенгагенского, ясен, прозрачен и неизменен. Уравнение Шрёдингера определяет распространение во времени волн вероятности и никогда не задвигается за штору; оно всегда при деле. Уравнение Шрёдингера направляет форму волн вероятности, заставляя их с течением времени смещаться, видоизменяться и колебаться. Определяем ли мы волну вероятности частицы или совокупности частиц или рассматриваем различные ансамбли частиц, составляющие вас или ваше измерительное оборудование, уравнение Шрёдингера берёт исходную форму волны вероятности в качестве начальных данных и подобно графической программе, управляющей замысловатой экранной заставкой, выдаёт волновой профиль в любой последующий момент времени. Согласно этому подходу, именно так развивается вселенная. На этом всё. Конец истории. Точнее, конец первой истории.

Отметим, что при изложении первой истории я не использовал ни слово «расщепляться», ни понятия «множество миров», «параллельные вселенные» или «квантовая мультивселенная». Многомировой подход не нуждается в этих гипотезах. Они не играют никакой роли в фундаментальной математической структуре теории. Но, как мы сейчас увидим, эти идеи будут призваны во второй истории, когда, следуя Эверетту и его последователям, расширившим его пионерские результаты, мы изучаем, как математика объясняет нам то, что мы наблюдаем и измеряем.

Давайте начнём с простого — или настолько простого, насколько получится. Допустим, мы измеряем положение электрона, волна вероятности которого имеет один пик (рис. 8.9). (Опять-таки, не беспокойтесь о том, почему у электрона именно такая форма волны вероятности — воспринимайте это как данность.) Как я уже говорил, нам не под силу детально изложить первую историю даже такого простого измерительного процесса. Для этого потребовалось бы с помощью уравнения Шрёдингера определить, как волна вероятности, описывающая положения огромного количества частиц, составляющих вас и ваш измерительный прибор, объединяется с волной вероятности электрона и как это объединение эволюционирует во времени. Мои студенты, многие из которых весьма способные, очень часто не могут решить уравнение Шрёдингера даже для одной частицы. Вы и детектор состоите примерно из 1027 частиц. Решить математически уравнение Шрёдингера для такого большого количества составляющих практически нереально. Однако мы качественно представляем результирующую картину. При измерении положения электрона массы частиц приходят в движение. Примерно 1027 частиц монитора детектора, подобно танцорам в хорошо поставленном шоу, спешат занять свои места, чтобы разом высветить «Угол тридцать четвёртой улицы и Бродвея», а примерно такое же количество частиц в моих глазах и голове делают всё необходимое для создания чёткого восприятия сообщаемого результата. Уравнение Шрёдингера, каким бы неподъёмным ни был точный анализ для столь огромного количества частиц, описывает именно такое перемещение.

Представить наглядно это преобразование на уровне волны вероятности также невозможно. На рис. 8.9 и других ему подобных я использовал сетку из двух координатных осей, ведущих с севера на юг и с востока на запад, чтобы обозначить возможные положения одной частицы на модели Манхэттена. Значения волны вероятности в каждом положении соответствовали высоте волны. Это уже является упрощением, потому что я не использовал третью ось, положение частицы по вертикали (где находится частица — на втором этаже «Macy’s» или на пятом). Я не мог использовать вертикальную ось, потому что иначе не осталось бы осей для отображения высоты волны. Таковы ограничения нашего головного мозга и зрительной системы, которые в результате эволюции воспринимают только три пространственных измерения. Для правильного изображения волны вероятности приблизительно 1027 частиц нам потребуется ввести по три оси для каждой, чтобы математически описать каждое возможное положение, которое может занять каждая из частиц. [48] Добавление даже одной вертикальной оси на рис. 8.9 затруднит его восприятие; добавление ещё миллиарда миллиардов лишает картину вообще какого-либо смысла.

48

Математическое описание приведено в комментарии {71}.

Однако очень важно иметь наглядный образ всех ключевых идей; поэтому давайте попытаемся, понимая, что результат будет далёк от совершенства. При описании волны вероятности частиц, из которых состоите вы и ваш детектор, я буду придерживаться варианта с двумя осями на плоскости, но при этом использовать непривычную интерпретацию этих осей. Грубо говоря, я буду считать, что каждая ось представляет собой огромный пучок осей, плотно сгруппированных между собой, которые символически изображают возможные положения такого же огромного количества частиц. Таким образом, волна, изображённая с помощью таких осей-пучков, будет описывать вероятности местоположений огромного набора частиц. Чтобы подчеркнуть разницу между одночастичной и многочастичной ситуациями, волна вероятности многочастичного набора будет иметь светящийся контур (рис. 8.13).

Рис. 8.13. Схематичное изображение комбинированной волны вероятности для всех частиц, составляющих вас и детектор

Одночастичная и многочастичная иллюстрации имеют некоторые общие свойства. Подобно волне с одним пиком (рис. 8.6), которая задаёт резко скошенную вероятность (почти 100 процентов в области пика и почти 0 процентов во всех остальных местах), остроконечная волна (рис. 8.13) также обозначает сильно скошенную вероятность. Но следует проявить осторожность, потому что понимание, основанное на одночастичной модели, может сыграть с вами злую шутку. Например, глядя на рис. 8.6 естественно думать, что рис. 8.13 соответствует частицам, которые все скопились в одном месте. Однако это не так. Остроконечный вид волны на рис. 8.13 символизирует, что начальное состояние каждой из частиц, составляющих вас, и каждой из частиц, из которых составлен ваш детектор, является обычным, знакомым состоянием, когда положение определяется с почти 100-процентной вероятностью. Однако не все частицы находятся в одном месте. Частицы из которых состоят ваши рука, плечо и голова почти наверняка сгруппированы там, где находятся ваши рука, плечо или голова; частицы, составляющие ваш измерительный прибор, почти наверняка сгруппированы там, где находится ваш прибор. Остроконечный волновой профиль на рис. 8.13 означает, что каждая из этих частиц имеет очень малый шанс быть обнаруженной где-либо в другом месте.

Если теперь выполнить измерение, показанное на рис. 8.14, то многочастичная волна вероятности (для частиц, из которых состоите вы и ваш детектор) из-за взаимодействия с электроном начнёт распространяться (как схематически показано на рис. 8.14а). Все вовлечённые в этот процесс частицы всё ещё находятся вблизи определённых положений (внутри вас, внутри детектора), поэтому волна на рис. 8.14а сохраняет остроконечный профиль. Но происходит массовое перераспределение частиц, которое приводит к фразе «Земляничные поля» на мониторе детектора, а также в вашей голове (рис. 8.14б). Рис. 8.14а иллюстрирует математическое преобразование, определяемое уравнением Шрёдингера, соответствующее истории первого типа. Рис. 8.14б иллюстрирует физическое описание данной математической эволюции, что соответствует истории второго типа. Аналогично, если осуществить эксперимент, показанный на рис. 8.15, то произойдёт аналогичное смещение (рис. 8.15а). Данное смещение соответствует массовому перераспределению частиц, которое приводит к фразе «Мемориал Гранта» на мониторе детектора и порождает в вашей голове соответствующий образ (рис. 8.15б).

Рис. 8.14а. Схематическая иллюстрация эволюции комбинированной волны вероятности всех частиц, составляющих вас и ваш детектор, определяемой уравнением Шрёдингера, при измерении положения электрона. Волна вероятности самого электрона имеет пик на Земляничных полях

Рис. 8.14б. Соответствующая физическая (экспериментальная) история

Рис. 8.15а. Тот же самый тип математической эволюции, как и на рис. 8.14а, но волна вероятности электрона имеет пик на мемориале Гранта

Рис. 8.15б. Соответствующая физическая (экспериментальная) история

Теперь воспользуемся линейностью и соединим два результата воедино. При измерении положения электрона, волна вероятности которого имеет два пика, волна вероятности частиц, из которых состоите вы и детектор, смешивается с волной электрона, что приводит к эволюции, показанной на рис. 8.16а — объединённой эволюции, изображённой на рис. 8.14а и 8.15а. Пока что это не более чем иллюстрированная и прокомментированная версия квантовой истории первого типа. Мы стартуем от волны вероятности с заданной формой, далее она эволюционирует во времени как предписывает уравнение Шрёдингера, и в результате возникает волна вероятности с новой формой. Давайте, опуская подробности, изложим эту математическую историю не количественным, а качественным языком истории второго типа.

Популярные книги

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Провинциал. Книга 5

Лопарев Игорь Викторович
5. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 5

Недомерок. Книга 3

Ермоленков Алексей
3. РОС: Недомерок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Недомерок. Книга 3

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя