Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:
Из нашей предыдущих обсуждений следует, что число 21000 задаёт энтропию монет. Для определённых целей этот вывод вполне достаточен. Однако для установления более глубокой связи между энтропией и информацией необходимо уточнить картину, описанную выше. Энтропия системы связана с числом неразличимых перегруппировок её компонентов, но, строго говоря, не равна ему. Эта взаимосвязь выражается с помощью математической операции, называемой логарифмом; не пугайтесь, если логарифм навевает дурные воспоминания о школьных уроках математики. В нашем примере с монетами это просто означает, что в качестве энтропии надо взять показатель полученного нами числа конфигураций, то есть энтропия определяется как 1000, а не 21000.
Преимущество использования логарифма в том, что он позволяет
Тут вы начнёте раздумывать. Чем на самом деле является информация и для чего она нужна? Вы даёте прямой и простой ответ. Информация отвечает на вопросы. Годы исследований по физике, математике и компьютерным технологиям сделали этот ответ точным. Эти исследования установили, что наиболее полезная мера содержания информации — это число различных «да или нет» вопросов, на которые у этой информации есть ответ. В примере с монетами есть 1000 таких вопросов: орёл у первого доллара? Да. Орёл для второго доллара? Да. Орёл для третьего доллара? Нет. Орёл для четвёртого доллара? Нет. И так далее. Элемент данных, который может содержать ответ на «да или нет» вопрос, называется битом — привычный для компьютерного века термин, являющийся сокращением от английского выражения binary digit, двоичный символ, означающий 0 или 1, о котором можно думать как о численном представлении ответов да или нет. Таким образом, конфигурации орёл-решка из 1000 монет содержат 1000 бит информации. Эквивалентным образом, если вы встанете на макроскопическую точку зрения Оскара и сосредоточитесь только на случайном расположении всех монет в целом, не обращая внимания на «микроскопические» детали орёл или решка, то информация, «скрытая» в этих монетах, составляет 1000 бит.
Отметим, что значение энтропии и количество скрытой информации равны. И это не случайно. Число возможных выпадений орёл-решка равно числу возможных ответов на 1000 вопросов — (да, да, нет, нет, да…) или (да, нет, да, да, нет…) или (нет, да, нет, нет, нет…) и так далее, а именно 21000. При определении энтропии как логарифма числа таких конфигураций — 1000 в нашем случае — энтропия равна числу «да или нет» вопросов для любой из таких последовательностей ответов.
Мы рассмотрели частный пример с 1000 монетами, но установленная связь между энтропией и информацией имеет совершенно общий характер. Микроскопические детали любой системы содержат информацию, которая скрыта только при рассмотрении макроскопических, совокупных свойств. Например, вы знаете температуру, давление и объём контейнера с паром, но известно ли вам, ударялась ли молекула H2O о верхний правый угол этого контейнера? А может быть другая молекула только что ударилась о нижний левый край? Так же как с разбросанными монетами, энтропия системы равна числу «да или нет» вопросов, ответы на которые содержатся в её микроскопическом состоянии, и поэтому энтропия является мерой, скрытой в системе информации. [55]
55
Если более точно, то это минимальное число «да или нет» вопросов, ответы на которые однозначно определяют устройство системы на микроскопическом уровне.
Энтропия, скрытая информация и чёрные дыры
Каким образом данное выше определение энтропии и его взаимосвязь со скрытой информацией применяется к чёрным дырам? Когда Хокинг разработал детальное квантово-механическое обоснование, связывающее энтропию чёрной дыры с площадью её горизонта событий, он не только дал количественное описание исходного утверждения Бекенштейна, но также создал алгоритм для его вычисления. Возьмите горизонт событий чёрной дыры, говорит Хокинг, и разбейте его на решётку, в которой сторона каждой клетки равна одной планковской длине (10– 33
56
Хокинг показал, что энтропия равна одной четвёртой от площади горизонта событий в планковских единицах.
Рис. 9.2. Стивен Хокинг математически показал, что энтропия чёрной дыры равна числу клеток планковского размера, необходимых для покрытия её горизонта событий. Как будто каждая клетка несёт один бит, базовую единицу информации
Общая теория относительности Эйнштейна, а также теоремы об отсутствии волос у чёрных дыр, не учитывают квантово-механические эффекты и поэтому полностью теряют эту информацию. Задайте массу чёрной дыры, её заряд и угловой момент, говорит общая теория относительности, и вы однозначным образом определите чёрную дыру. Однако Бекенштейн и Хокинг утверждают, что это не так. Они установили, что должно существовать много разных чёрных дыр с одинаковыми макроскопическими свойствами, которые, тем не менее, отличаются на микроскопическом уровне. Как и в более привычных примерах — про монеты на полу или пар в контейнере — энтропия чёрных дыр отражает информацию, скрытую в более мелких деталях.
Не менее неординарные, чем сами чёрные дыры, эти открытия установили, что в вопросе об энтропии чёрные дыры ничем не отличаются от всего остального. Однако полученные результаты привели к новым вопросам. Хотя Бекенштейн и Хокинг говорят нам, сколько информации скрыто в чёрной дыре, нам ничего не известно о том, что это за информация. Неизвестно, на какие специфические «да или нет» вопросы отвечает эта информация, не установлен состав микроскопических компонент, которые эта информация предназначена описывать. Математический анализ точно определил величину информации данной чёрной дыры, ничего не сообщив о природе этой информации.{83}
Эти вопросы до сих пор ставят в тупик. Но есть и другая загадка, которая видится ещё более важной: почему количество информации определяется площадью поверхности чёрной дыры? Если бы вы спросили меня, сколько информации содержится в библиотеке Конгресса, я стал бы говорить о доступном пространстве внутри здания библиотеки. Потребовалось бы знать вместимость залов библиотеки, необходимых для размещения полок, картотек, микрофишей, фотографий и документов. То же самое справедливо для информации внутри моей головы, объём которой, по-видимому, привязан к объёму головного мозга, доступному пространству для нейронных связей. То же самое имеет место для информации в контейнере с паром, которая содержится в свойствах заполняющих контейнер частиц. Однако удивительно, что применительно к чёрным дырам способность для хранения информации определяется, согласно Бекенштейну и Хокингу, не объёмом, а площадью поверхности.
До появления этих результатов физики считали, что поскольку планковская длина (10– 33 сантиметра) является, по-видимому, наименьшей длиной, для которой понятие «расстояния» всё ещё имеет смысл, то наименьшим осмысленным объёмом будет крошечный кубик, грани которого имеют планковскую длину (объём кубика равен 10– 99 кубического сантиметра). Разумная гипотеза, которой придерживались многие, была такова, что независимо от будущих технологических прорывов наименьший объём может хранить не более одной наименьшей единицы информации — одного бита. Поэтому ожидалось, что максимальное количество информации, которое может содержаться в данной области пространства, равно числу планковских кубиков, способных поместиться внутри этой области. Поэтому присутствие планковской длины в результате Хокинга не было неожиданным. Удивительно то, что хранилище информации чёрной дыры определяется не заполняющим её объём числом планковских кубиков, а числом покрывающих поверхность чёрной дыры планковских клеток.