Чтение онлайн

на главную

Жанры

Слепой часовщик

Докинз Ричард

Шрифт:

Читатель заметит, что эта аргументация базируется на предположении, что микроскоп уже был уже довольно близок точному фокусу, когда мы начали производить наше случайное регулирование. Если микроскоп изначально был в 2-х дюймах от фокуса, то случайное изменение в 1 дюйм с 50 процентной вероятностью повлечёт улучшение, как впрочем и случайное изменение в одну сотую дюйма. В этом случае «макромутация», вроде бы имеет преимущество, потому, что настраивает фокус быстрее. В этом случае аргументация Фишера будет, конечно, применима к «мегамутациям», — например, движению на 6 дюймов в случайном направлении.

Но почему Фишеру было позволительно выдвигать предположение о первоначально почти точной фокусировке микроскопа? Предположение вытекает из роли микроскопа в этой аналогии. Микроскоп, после случайных манипуляций с его настройкой — аналог мутантного животного. Микроскоп до этих манипуляций — это нормальный, немутантный родитель

нашего предполагаемого животного-мутанта. Так как он — родитель, то он, должно быть, жил достаточно долго, чтобы размножаться, и поэтому он не может быть сильно «разрегулирован». Точно так же, микроскоп — до случайного сдвига регулировки, не может быть далёк от фокуса, ибо животное, роль которого он играет в этой аналогии, не могло бы иначе выжить вообще. Это только аналогия, поэтому нет никакого смысла обсуждать, означает ли это «далеко» дюйм, десятую часть или тысячную часть дюйма. Важно здесь то, что, если мы рассматриваем мутации возрастающей величины, то мы дойдём до точки, когда чем больше мутация, тем менее вероятна её выгодность; при этом, если мы рассматриваем мутации уменьшающейся величины, то дойдём до точки, когда вероятность выгодной мутации составит 50 процентов.

Поэтому спор о том, могли ли бы макромутации типа антеннопедии быть в принципе выгодными (или, по крайней мере, не вредными), и следовательно — могли ли бы вызывать эволюционные изменения, упирается в то, насколько «макро» рассматриваемая мутация. Чем более она «макро», тем более вероятно, что она будет вредна, и менее — что она включится в процесс развития вида. Важный факт — практически все мутации, изучаемые в лабораториях генетики, являются весьма «макро» мутациями (иначе генетики не заметили бы их) и вредными для животных (как ни смешно, я встречал людей, полагавших, что это — аргумент против дарвинизма!). Аналогия с микроскопом Фишера высвечивает первую причину для скептицизма насчёт теорий «скачкообразной» эволюции, по крайней мере, в их экстремальной форме.

Вторая общая причина не верить в настоящие скачки — также статистическая, и степень этого неверия также зависит от количественной величины «макроскопичности» постулированной нами макромутации. В этом случае внимание обращается на сложность эволюционных изменений. Многие, хотя не все, интересующие нас эволюционные изменения очень продвинуты в своей сложности. Ярчайший пример — глаз, обсуждённый нами в предыдущих главах, достаточно проясняет идею. Животные с глазами, подобными нашему, развились от прародителей, не имевших глаз вообще. Крайний сторонник теории скачков мог бы предположить, что развитие его имело место в единственном мутационном шаге. У родителя не было вообще никаких глаз, только голая кожа на том месте, где мог бы быть глаз. И у него был бы «уродливый» потомок с полностью развитыми глазами, с хрусталиком, обеспечивающим переменный фокус, с радужной оболочкой для «диафрагмирования», сетчаткой с миллионами чувствительных к трём разным цветам клеток, и всё это с нервами, правильно подключенными к мозгу, чтобы предоставить ему корректное, бинокулярное, стереоскопическое цветовое зрение.

Исходя из модели биоморф, мы предположили, что такое многомерное усовершенствование происходить не может. Повторим, почему это предположение было разумным. Чтобы сделать глаз из ничего, требуется не одно-единственное улучшение, а большое их количество. Любое из них само по себе весьма маловероятно, но не настолько, чтобы быть невозможным. Но чем большее число одновременных улучшений мы рассматриваем, тем более невероятным будет их одновременное возникновение. Одновременное и согласованное их возникновение эквивалентно прыжку на большое расстояние по Стране Биоморфов и приземлению на единственную, конкретную и предопределённую точку. Если мы будем рассматривать достаточно большое количество улучшений, то их совместное возникновение становится настолько невероятным, что, как ни крути, невозможным. Доказательств этого приводилось уже достаточно, но может быть полезно указать на различия между двумя видами гипотетических макромутаций, обе выглядят невозможными по причине сложности, но фактически невозможной является только одна из них. Я обозначу их, по причинам, которые станут понятны ниже, как макромутацию «Боинг 747» и как макромутацию «Стретч DC-8».

Макромутации «Боинг 747» действительно исключены по только что описанной причине сложности. Это название они получили вслед за памятным заблуждением астронома сэра Фреда Хойла относительно теории естественного отбора. Он сравнил предполагаемое неправдоподобие естественного отбора, с ураганом, раздувающем хлам на свалке и случайно собирающем Боинг 747. Как мы видели в главе 1, в отношении естественного отбора это совершенно ложное сравнение, но это очень хорошая аналогия для иллюстрации идеи некоторых видов макромутаций, вызывающих эволюционные изменения. Фундаментальная ошибка Хойла состояла

в том, что он фактически думал (не осознавая этого), что теория естественного отбора базируется на макромутациях. Идея порождения единственной макромутацией полностью функционирующего глаза с вышеперечисленными свойствами, на месте, где прежде была только голая кожа, и в самом деле примерно столь же немыслима, сколь же и ураган, собирающий Боинг 747. Именно поэтому я упоминаю этот вид гипотетической макромутации как макромутацию «Боинг 747».

Макромутации «Стретч DC-8» — это мутации, которые могут быть большими по величине их эффектов, но в сущности невелики в терминах сложности. Стретч DC-8 — это воздушный лайнер, который был изготовлен путём изменения более ранней модели воздушного лайнера DC-8. Он подобен изначальному DC-8, но имеет более длинный фюзеляж. Это изменение было улучшением, по крайней мере, с одной точки зрения — он мог вмещать больше пассажиров, чем прародительский DC-8. Стретч — это большое увеличение длины, и в этом смысле оно аналогично макромутации. Более интересно то, увеличение длины выглядит на первый взгляд, сложным изменением. Чтобы удлинить фюзеляж воздушного лайнера, недостаточно просто вставить дополнительную секцию в фюзеляж. Также нужно удлинить бесчисленные трубки, тяги, воздуховоды и электрические провода. Нужно установить дополнительные сидения, пепельницы, фонари подсветки, 12-канальные музыкальные селекторы и сопла вентиляции. На первый взгляд, стретч DC-8, обладает намного большей сложностью, чем обычный DC-8, но так ли это? А вот и нет — по крайней мере — в той степени, в какой «новые» вещи в растянутом самолёте — это только «большее количество старых». Биоморфы третьей главы часто демонстрируют макромутации типа «стретч DC-8».

Какое отношение всё это имеет к мутациям реальных животных? Вот какое. Некоторые реальные мутации вызывают большие изменения, весьма подобные изменениям от стандартного DC-8 до удлиненного (стретч) DC-8, и некоторые из них, хотя и в некотором смысле «макро» мутации, однозначно вошли в эволюцию. У всех змей, например, намного больше позвонков, чем у их предков. Мы могли бы убедиться в этом, даже не располагая окаменелостями, потому что у змей намного больше позвонков, чем у близких к ним живущих форм. Кроме того, число позвонков различается у различных видов змей, что означает, что количество позвонков весьма часто менялось в эволюции змей от их предков.

Тогда, чтобы изменить у животного число позвонков, нужно сделать больше, чем просто втиснуть дополнительную кость. С каждым позвонком связан набор нервов, кровеносных сосудов, мышц и т. д., так же как с каждым рядом мест в воздушном лайнере связан набор подушек, подголовников, гнёзд для наушников, индивидуального освещения с подключенными кабелями и т. д. Средняя часть тела змеи, подобно средней части тела воздушного лайнера, составлена из множества сегментов, многие из которых в точности подобны друг другу, как бы сложны они ни были по отдельности. Поэтому всё, что нужно делать для добавления новых сегментов — просто дублировать. Так как генетические машины для создания одного сегмента змеи уже существуют, а это генетические машины большой сложности, создание которых потребовало много поколений пошаговой, постепенной эволюции, то добавление новых идентичных сегментов может быть с лёгкостью осуществлено на единственном мутационном шаге. Если мы рассматриваем гены как «инструкции по развитию эмбриона», то ген для вставки дополнительных сегментов может интерпретироваться просто как указание «сделать здесь больше того же самого». Я представляю себе, что инструкции для постройки первого стретча DC-8 были в чём-то подобны.

Можно обратить внимание на то, что в эволюции змей, количество позвонков менялось на целое, а не дробное число. Мы не можем представить себе змею с 26.3 позвонками. У неё было 26 или 27, и, очевидно, бывали случаи, когда змея-потомок имела по крайней мере на один целый позвонок больше, чем её родители. Это означает, что у неё был полный дополнительный набор нервов, кровеносных сосудов, мышц и т. д. Тогда получается, что эта змея — макромутант, но только в слабом смысле «стретча DC-8». Легко поверить, что отдельные особи змей, имеющие на полудюжины больше позвонков чем их родители, могли возникнуть за единственный мутационный шаг. «Аргумент сложности» против скачков эволюции не относится к макромутациям типа «Стретч DC-8», так как если внимательно посмотреть на характер произведённых изменений, то окажется, что в реальности это не истинные макромутации вообще. Они выглядят макромутациями только тогда, когда мы наивно смотрим на готовое, взрослое существо. Если же мы смотрим на процессы эмбрионального развития, то они окажутся микромутациями в том смысле, что незначительное изменение в инструкциях построения эмбриона оказало большой и очевидный эффект во взрослом существе. То же самое относится и к антеннопедии у плодовых мушек и многих других, так называемых «гомеотических мутаций».

Поделиться:
Популярные книги

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17