Слепой часовщик
Шрифт:
Ладно, пусть такой градуалист — несуществующая карикатура, вроде ветряной мельницы для копья пунктуалиста, но существуют ли какие-то другие, реальные градуалисты, истинные приверженцы своей веры? Я покажу вам, что ответ на этот вопрос утвердителен, и что ряды градуалистов, в этом втором смысле слова, включают всех разумных эволюционистов, среди которых, если вы тщательно рассмотрите их веру, есть и те, кто называет себя пунктуалистами. Но нам нужно понять, почему пунктуалисты полагали свои взгляды революционными и захватывающими. Всё началось с существования очевидных «пробелов» в ископаемой летописи, и именно к ним мы сейчас и переходим.
Прогрессивные эволюционисты уже со времён Дарвина поняли, что все имеющиеся у нас окаменелости, разложенные в хронологическом порядке, не образуют гладкую последовательность из едва заметных изменений. Разумеется, мы можем различить долговременные тенденции изменений — ноги становятся всё длиннее, черепа — всё выпуклее, и так далее; но эти тенденции, отмечаемые по ископаемой летописи,
Американские палеонтологи Нил Элдридж и Стивен Джей Гулд, первыми предложившие теорию пунктированного равновесия в 1972 году, подали её тогда как очень неортодоксальное предложение. Они говорили, что на деле имеющаяся у нас ископаемая летопись не может быть столь неполна, как мы думаем. Возможно, что «пробелы» в ней отражают истинное положение дел, а не досадные, но неизбежные следствия неполноты ископаемой летописи. Они предполагали, что эволюция, возможно, и в самом деле производила в некотором смысле внезапные взрывы развития, прерывающие длительные периоды «стазиса», когда в данной линии не происходило никаких эволюционных изменений.
Прежде, чем мы рассмотрим те внезапные взрывы, которые они имели в виду, скажем, что возможны некоторые разновидности «внезапных взрывов» которые они совершенно определённо в виду не имели. Их нужно исключить из анализа, ибо они могут привести к серьёзным недоразумениям. Элдридж и Гулд, конечно, согласились бы с тем, что некоторые, очень важные пробелы действительно являются следствием изъянов в ископаемой летописи. В том числе — очень большие пробелы. Например, Кембрийские отложения, сформировавшиеся примерно 600 миллионов лет назад, являются самыми старыми отложениями, в которых мы находим большую часть главных групп беспозвоночных. И многие из них обнаруживаются на весьма продвинутой стадии развития — уже при первом своём появлении в отложениях. Как будто они были подсажены туда без какой-либо эволюционной предыстории. Само собой, это внезапное появление восхитило креационистов. Однако эволюционисты всех направлений полагают, что здесь имеет место реальный и очень большой пробел в ископаемой летописи, пробел, возникший просто вследствие того, что по разным причинам очень немногие окаменелости дошли до нас со времён более ранних, чем примерно 600 миллионов лет назад. Одной из таких серьёзных причин могло бы быть отсутствие у многих из этих животных твёрдых раковин или костей, которые только и могут оставлять окаменелости. Если вы — креационист, то вы можете подумать, что это специальная отговорка. Моё же мнение здесь — что когда мы говорим о пробелах такой величины, то уже не может быть никакой разницы в интерпретациях «пунктуалистов» и «градуалистов». Обе школы в равной степени презирают так называемых научных креационистов и обе согласны в том, что главные пробелы реальны и в самом деле являются изъянами в ископаемой летописи. Обе школы согласны в том, что единственным альтернативным объяснением внезапного появления столь многих сложных типов животных в Кембрийском периоде могло бы быть лишь их божественное творение, и обе отклоняют эту альтернативу.
Существует и другое мыслимое объяснение «рывков» эволюции, и это также не то объяснение, которое предлагали Элдридж и Гулд, по крайней мере — в большинстве своих статей. Не исключено, что некоторые из очевидных «пробелов» в ископаемой летописи действительно отражают внезапное изменение в единственном поколении. Не исключено, что и в самом деле никаких промежуточных звеньев никогда не было; а крупные эволюционные изменения имели место сразу. Сын мог родиться настолько отличным от своего отца, что по праву принадлежал бы другому виду, нежели отец. Он был бы мутантной особью, и эта мутация была бы столь велика, что мы были бы должны трактовать её как макромутацию. Теории эволюции, опирающиеся на макромутации, называются теориями «скачков». Так как теорию прерывистого равновесия часто путают с настоящими теориями скачков, то здесь важно их обсудить и показать, почему такие скачки не могут быть значимыми факторами эволюции.
Макромутации — мутации крупных эффектов — несомненно, происходят. И обсуждать следует не возможность их возникновения, а роль, играемую ими в эволюции; другими словами, включаются ли они в генофонд вида, или, напротив, всегда устраняются из него естественным отбором. Самый знаменитый пример макромутации — «антеннопедия» у плодовых мушек. Антенны имеют нечто общее с лапками и у нормальных насекомых, и они сходно развиваются в эмбрионе. Но и различия тоже велики — эти два вида конечностей используются для очень разных целей: лапки — для ходьбы; антенны — для осязания, обоняния и иных сенсорных функций. Антеннопедические
Да, макромутации случаются в природе. Но играют ли они роль в эволюции? Сторонники теории скачков полагают, что главные скачки в эволюции могли бы происходить в единственном поколении благодаря макромутации. Ричард Голдшмидт, с которым мы встречались главе 4, был истинный сторонник скачков. Если бы сторонники скачков были бы правы, то видимым «пробелам» в ископаемой летописи не требовалось бы быть пробелами как таковыми. Например, сторонник скачков мог бы полагать, что переход от скошенного лба австралопитека к куполообразному черепу Homo sapiens имел место в единственном макромутационном шаге, в единственном поколении. Внешние различия между этими двумя видами, вероятно, были бы меньше, чем различия между нормальной и антеннопедической плодовой мушкой, поэтому теоретически мыслимо, что первый Homo sapiens был ребёнком-уродцем, вероятно, подвергаемый остракизму и гонениям двух нормальных родителей-австралопитеков.
Есть очень серьёзные основания отклонить все такие теории скачков. Одно из них, довольно прозаическое, состоит в том, что, если новый вид действительно возникал в единственном мутационном шаге, то члены нового вида могли бы иметь тяжёлые проблемы с поисками брачных партнёров. Но я нахожу эту причину менее красноречивой и интересной, чем две другие, которые уже упоминались в нашем обсуждении крупных скачков по Стране Биоморфов, и почему они должны быть исключены. На первую из них указал крупный статистик и биолог Р. A. Фишер, с которым мы уже встречались по другим поводам в предыдущих главах. Во времена, когда теории скачков были намного более модны, чем сейчас, Фишер был решительным противником всех их разновидностей. Он предложил следующую аналогию. Предположим, что у нас есть микроскоп, который почти точно, но не абсолютно сфокусирован, а во всех других отношениях хорошо отрегулирован для чёткого видения. Каковы шансы на то, что, если мы произведём какое-то случайное изменение фокусировки микроскопа (аналог мутации), то мы улучшим фокус и общее качество изображения? Фишер сказал:
Вполне очевидно, что любое большое смещение фокусировки с очень маленькой вероятностью улучшит фокусировку, в то же время, в случае изменений намного меньших, чем минимальные из преднамеренно произведённых изготовителем или оператором, шанс улучшения должен быть равен почти точно одной второй.
Я уже отмечал, что Фишер находил «легко понятным» то, что могло потребовать огромных умственных усилий обычных учёных; то же самое верно в отношении того, что Фишер находил «вполне очевидным». Однако дальнейшее обдумывание вопроса почти всегда показывает, что он был прав, и, в данном случае, мы можем доказать это к нашему удовлетворению без особо большого труда. Вспомним, что перед началом опыта наш микроскоп предполагается в состоянии почти точного фокуса. Предположим, что объектив его находится чуть ниже того положения, в котором фокус был бы точным, скажем — на десятую часть дюйма ближе к предметному стеклу. Теперь, если мы переместим объектив на маленькую дистанцию, скажем, на сотую часть дюйма в случайном направлении, то каковы шансы на то, что фокус улучшится? Да, если окажется, что мы сдвинулись вниз, на сотую часть дюйма, то фокус ухудшится. Если же мы случайно сдвинем его на сотую часть дюйма вверх, то фокус станет лучше. Так как мы перемещаем объектив в случайном направлении, то вероятность каждого из этих двух исходов — одна вторая. И чем меньшим будет относительно начальной ошибки это регулирующее движение, тем ближе вероятность улучшения будет к одной второй. Вторая часть утверждения Фишера доказана.
Но теперь предположим, что мы переместили трубку микроскопа на большое расстояние (как бы произвели макромутацию), также в случайном направлении; пусть это будет полный дюйм. В этом случае не имеет значения, в каком направлении мы делаем перемещение — вниз или вверх — в любом случае фокус будет хуже, чем он был ранее. Если мы случайно переместим его вниз, то объектив отдалится от идеального положения на один и одну десятую дюйма (и, вероятно, разобьёт предметное стекло). Если мы случайно переместим его вверх, то он отдалится теперь на девять десятых дюйма от идеала. Перед перемещением он был отдалён лишь на одну десятую дюйма идеального положения, так что любой вариант нашего «макромутационного» большого перемещения сделал только хуже. Мы проделали вычисления для очень большого перемещения («макромутация») и очень маленького («микромутация»). Очевидно, мы можем проделать то же самое перемещений промежуточных величин, но в этом нет никакого смысла. Я думаю, что уже достаточно очевидно, что чем меньшее перемещение мы сделаем, тем более мы приблизимся к одному экстремуму, в котором вероятность улучшения — одна вторая, а чем больше мы сделаем перемещение, тем более мы приблизимся к другому экстремуму, в котором шансы на улучшение равны нулю.