Современная космология: философские горизонты
Шрифт:
Сам факт возникновения слоев или конкретных способов компактификции N– пространственных измерений в современной теории определяется динамикой эволюции физического вакуума, цепочкой спонтанных нарушений его симметрии. Потому вакуум представляет собой состояние геометрии, в котором отсутствуют его возбуждения, отсутствуют возбуждения как самой геометрии, так и внешних по отношению к геометрии возбуждений вакуума, интерпретированных выше как микроподсистема, которая в существующей теории еще полностью не геометризирована, о чем сказано выше.
Сложность (и непроясненность) проблемы соотношения вакуума и геометрии удивительно напоминает сложность диалектики формы и содержания в гегелевской философии. Можно утверждать, что геометризация физики означает поиски внутренней формы организации конкретного содержания. Если ньютоновские представления о пространстве и времени есть только кажимость (это еще не форма), на что обращали внимание такие мыслители прошлого, как Беркли, Кант, Гегель, Мах, а четырехмерный мир Эйнштейна-Минковского — внешняя форма существования мира, то придание всем структурным
Важнейшими элементами Стандартной Модели физики элементарных частиц, проверенной экспериментально, являются две вакуумные подсистемы: 1) электромагнитная и слабая, объединенные в единую электрослабую подсистему в рамках теории Вайнберга-Салама, и 2) подсистема, связанная с квантовой хромодинамикой, являющейся теорией сильных взаимодействий. Природа этих вакуумных подсистем различна. В соответствии с экспериментальными данными предполагается, что слоистая симметрия, соответствующая электрослабым взаимодействиям, спонтанно нарушена, то есть эта структура определенным образом деформирована в однородном пространстве-времени. Этот эффект однородной деформации описывается с использованием представлений о существовании хиггсовского вакуумного конденсата (H– бозонов), разлитого по всей Вселенной. Формально математически хиггсовский конденсат рассматривается как состояние скалярного поля (бозонного поля с нулевыми значениями спинов бозонов), взаимодействующего со слоистой структурой, соответствующей электрослабому взаимодействию. В свете вышеприведенных рассуждений возникает вопрос о вписывании этого скалярного поля в геометризированную теорию. Понятно, что надежды на такое решение весьма обнадеживающие, но пока скалярное поле выступает в качестве некоторого дополнительного и самостоятельного элемента теории, вводимого в нее для описания деформации слоистой структуры электрослабого поля.
Вторая подсистема, соответствующая хромодинамическому вакууму, имеет существенно иную природу и связана с квантово-топологическими явлениями в микромасштабах пространства-времени. Речь в данном случае идет о топологии расслоений. Оказалось, что одному и тому же энергетическому состоянию слоистой структуры могут соответствовать ее различные конфигурации, которые не сводятся друг к другу непрерывными преобразованиями. С точки зрения классической физики каждая конфигурация должна соответствовать отдельной Вселенной. Учет законов квантовой физики позволяет говорить о возможности существования отдельных спонтанных туннельных переходов между различными конфигурациями. Эти спонтанные туннельные переходы условно объединяют различные вакуумы (которые в классической физике соответствовали бы разным вселенным) в единый хромодинамический вакуум нашей Вселенной со сложной топологической микроструктурой. Как стало понятно, эти туннельные переходы сопровождаются в реальном пространстве-времени квантовыми флуктуациями слоистой структуры — глюонного поля, которые, в свою очередь, индуцируют флуктуации кварковых полей (внешних объектов по отношению к слоистой геометрии). Каждая из этих флуктуаций локализована в пространстве-времени и называется кварк-глюонным вакуумным конденсатом.
С изучением этих вакуумных подсистем удалось понять ряд свойств наблюдаемого мира, которые ранее остались непонятными. Например, взаимодействие волнового поля с хиггсовским конденсатом, как предполагается, генерирует массы различных частиц (так называемый механизм Хиггса). Кварк-глюонный конденсат позволил понять природу масс адронов. Адрон рассматривается как область перестроенного кварк-глюонного вакуума, стабилизированного валентными кварками. Эта область обладает плотностью энергии вакуума большей, чем плотность энергии неадронного вакуума. Значительная часть масс адронов, приблизительно половина всей массы, обеспечивается энергией перестроенного кварк-глюонного вакуума.
К этим двум подсистемам добавляется подсистема, введенная Дираком, представляющая собой нулевые колебания различных полей. Они всегда наличествуют, но рассматриваются уже на фоне конденсатов.
Подчеркнем, что подобная классификация вакуумных подсистем соответствует современной ступени познания мира, но уже сейчас понятно, что все эти три подсистемы есть различные проявления единой универсальной вакуумной структуры, соответствующей описанию мира в терминах единой универсальной геометрии.
Представленность целостного мира в виде двух подсистем — вакуумной и подсистемы возбуждений вакуума — сама по себе является прогнозом сложной гетерогенной структуры вакуума. Выявлению особенностей внутренней структуры вакуума служит комплекс экспериментов, запланированных к постановке на Большом адронном коллайдере.
На Большом адронном коллайдере предполагается осуществление пяти научных программ: 1) поиск бозонов Хиггса — H– бозонов, открытие которых является одним из узловых вопросов стандартной модели квантовой теории поля; 2) поиск нейтралино, из которых, предположительно, состоит «темная материя», что явилось бы подтверждением теории суперсимметрии, лежащей в основе построения единой теории поля; 3) изучение кварк-глюонной плазмы, возникающей в области соударений высокоэнергетических тяжелых ионов. В этом эксперименте в области пространства масштаба размеров ионов будет проведено разрушение структур хромодинамического вакуума. После искусственного перевода хромодинамического вакуума в неравновесное состояние будут изучаться процессы его релаксации в устойчивое состояние в режиме реального времени; 4) детальное изучение протон-протонного взаимодействия с целью изучения изменений свойств пространства (вакуума) в окрестностях столкновения протонов. Протоны при этом как бы разбухают, но границы каждого из них становятся более резкими и, кроме того, в результате перестройки вакуума вероятность взаимодействия протонов увеличивается. Совокупность этих трех свойств взаимодействия адронов при высоких энергиях принято называть BEL — эффект (Black-Edge-Large). Вопрос состоит в том, как BEL — эффект проявляет себя при больших энергиях, будет ли получено согласование эксперимента с теоретическими предсказаниями; 5) изучение свойств вакуума в области слабых взаимодействий с целью выяснения деталей эффекта нарушения комбинированной четности (СР — инвариантности). На коллайдере предполагается исследование осцилляций b– мезонов, которые с хорошей вероятностью рождаются в протон-протонных взаимодействиях. В процессах с участием b– мезонов должны количественно заметно проявляться физические явления, ответственные за необратимость времени, и в экспериментах на LHC эти явления будут изучены детально.
Последние три из перечисленных выше экспериментальных программ дадут, как предполагается, реальные результаты, служащие уточнению существующих теорий. Что касается первых двух, то здесь вполне возможны разочарования, связанные с неподтверждаемостью возлагаемых на эти эксперименты ожиданий физиков.
В простейшем варианте теории предсказывается самая простая структура вакуумного хиггсовского конденсата, характеризуемая только одним энергетическим параметром. Такая структура имеет только один тип возбуждений, который в эксперименте должен проявляться как электронейтральный хиггсовский бозон H0. Если эксперимент подтвердит существование только одного хиггсовского бозона со свойствами, полностью соответствующими предсказаниям Стандартной Модели, то на повестку дня выдвинутся проблема поколений и проблема выделенного статуса нейтрино [313] . В этом случае с необходимостью должна быть востребована качественно новая информация, лежащая уже за рамками Стандартной Модели.
313
См. Верешков Г.М., Минасян Л.А. Эпоха критических экспериментов в фундаментальной физике и космологии// Научная мысль Кавказа. 2004. № 3. С. 48–57.
При другом результате эксперимента, подтверждающем более сложный вариант Стандартной Модели, в котором хиггсовый конденсат описывается тремя физическими величинами, а в его спектре возбуждений уже 5 бозонов Хиггса — 2 заряженных Н± и 3 нейтральных: Н10, Н20 и А0, возникают перспективы для подтверждения концепции суперсимметрии. В случае подтверждения концепции суперсимметрии возникает основа для развития новых представлений о пространстве-времени и о «темной материи».
Становится понятным, что существующая теоретическая стратегия в значительной своей части уже сейчас имеет экспериментальное подтверждение, часть проблем планируется разрешить с помощью экспериментов на Боль-шом адронном коллайдере, однако многие вопросы, по-прежнему, будут оставаться длительное время без ответов. Это плата за дерзновенность самого замысла. Сейчас можно сделать вполне определенные прогнозы, являющиеся следствием достаточно смелых, но и надежных экстраполяций, являющих собой вполне конкретные теоретические разработки. А именно: на очень малых пространственновременных масштабах мы обязательно обнаружим дополнительные вакуумные структуры, связанные с расслоенной супергеометрией, являющиеся локальными проявлениями многомерных структур. Вопрос состоит в том, какая из имеющихся теоретических моделей в большей степени будет соответствовать экспериментальным результатам, на каких масштабах энергий? Но уверенность в том, что программа унификации (программа единой теории поля, включающей в себя концепцию суперструн) должна быть неизбежно связана с представлениями о сложной гетерогенной структуре вакуума и многомерностью пространства-времени, в среде ученых остается практически непоколебимой.