Современная космология: философские горизонты
Шрифт:
Кроме относительной плотности важным космологическим параметром, который играет одну из основных системообразующих ролей в раскрытии содержания современного представления понятия «Вселенная», является постоянная Хаббла. Уточнению её значения различными методами посвящено множество работ, список которых ежемесячно увеличивается на несколько десятков. В разных источниках указаны разные значения Н, правда, не сильно отличающиеся друг от друга. Например: Н = 72 км/с•Мрс (Мрс — Мега параллакс секунда — расстояние, равное приблизительно 3•1019 км) в одной из них [347] , в дру-гой работе [348] указано два значения Н, померенные различными методами: Н = 72 ± 7 км/с•Мрс и Н = 59 ± 6 км/с•Мрс, а, кроме того Н = 71 ±6 км/с •Мрс [349] , Н = 70 ± 8 км/с •Мрс [350] , Н = 67
347
Reid David D„Kittell Daniel W„Arsznov Eric E., Thompson Gregory B. The picture of our universe: A view from modern cosmology // arXiv: astro-ph/0209504 v2.
348
Deustua Susana Е., Caldwell Robert, Garnavich Peter, Hui Lam, Re-fregier Alexandre. Cosmological Parameters, Dark Energy and Large Scale Structure // arXiv: astro-ph/0207293 vl
349
Kinney William H. Cosmology, Inflation, and the Physics of Nothing // arXiv: astro- ph/0301448 vl
350
Krauss Lawrence M. The State of the Universe: Cosmological Parameters 2002. // arXiv: astro-ph/0301012 v2
351
Peebles P.J.E. The Cosmological Constant and Dark Energy // arXiv: astro-ph/0207347 v2.
352
Гинзбург В.Л. О некоторых успехах физики и астрономии за последние три года // Успехи физических наук — 2002. — Том 172, № 2.
– С.213–219.
353
Marina Seikell, DominikJ. Schwarz. How strong is the evidence for accelerated expansion? // arXiv: astro-ph0711.3180v 1
Зная Н, можно легко установить возраст нашей Вселенной, однако, он будет зависеть от соотношения плотности вакуума и материи [354] . Там же приведена эта зависимость для Н = 70 ± 8 км/с•Мрс. Если E = 0, а В = 1, тогда t0 = 9.7 ± 1, если E= 0.8, а В = 0.2, тогда t0 = 15.3 ± 1.5, если E= 0.7, а В= 0.3, тогда t0=13.7 ± 1.4, если E = 0.65, а В = 0.35, тогда t0 =12.9 ± 1.3, где t0 — время, прошедшее от начала расширения Вселенной, взятое в миллиардах лет.
354
См. Krauss Lawrence M. The State of the Universe: Cosmological Parameters 2002 // arXiv: astro-ph/0301012 v2
Такова, в общих чертах, Вселенная в своих основных системообразующих свойствах и качествах, с точки зрения современных, впрочем, быстро меняющихся представлений.
Г. И. Наан
Проблема бесконечности принадлежит к числу «вечных» проблем науки, привлекающих пристальное внимание математиков, естествоиспытателей и философов.
Пограничный характер проблемы бесконечности, необходимость ее разработки общими усилиями представителей естествознания, математики и философии уже подчеркивался автором [355] . Однако и сейчас существуют точки зрения о том, что проблема относится всецело к компетенции естественных наук либо, наоборот, «исключительно» или хотя бы «прежде всего» к компетенции философии (см., например [356] ). Не столь важно, по какому «ведомству» — естественнонаучному или философскому — числить проблему, гораздо важнее, чтобы она разрабатывалась на современном научном уровне; а это возможно только при участии представителей разных отраслей математики, физики, астрономии, философии. Иными словами, не следует стремиться к тому, чтобы пограничная проблема была предметом пограничного конфликта.
355
Наан Г.И. О бесконечности Вселенной // Вопросы философии. № 6, 1961.
356
Свидерский В. И. О философском понимании конечного и бесконечного // Вопросы философии. № 6, 1964.
В современной науке проблема бесконечности стала чрезвычайно многогранной. Бурное развитие математики за последние сто лет привело к открытию ряда новых, чрезвычайно интересных аспектов бесконечного, а успехи космологии показывают, что они имеют реальные прообразы в природе. Легче всего заниматься бесконечностью, если обо всем этом ничего не знать: невинность рождает отвагу. Многогранность проблемы рождает также соблазн расчленить бесконечность на разные, мало связанные бесконечности-омонимы (философскую, космологическую, ряд математических). Если учесть еще, что термин «Вселенная» только в физико-математических науках применяется в пяти — шести разных значениях, то оказывается возможным придавать самый различный смысл словосочетанию «бесконечность Вселенной».
По-видимому, не было сделано попыток классификации типов бесконечности или хотя бы составления их перечня. Предлагаемый ниже обзор, вероятно, также не является исчерпывающим.
Выдвигаемая на обсуждение симпозиума точка зрения в известном смысле противоположна очерченной выше. Делается попытка найти единство в многообразии, трактовать различные аспекты бесконечности в математике, физике, астрономии и философии как различные отражения одной и той же реальности — реальной бесконечности реальной Вселенной.
2.1. Практическая бесконечность отличается тем, что а) является исторически первым и логическим простейшим представлением о бесконечности; б) несмотря на это чаще всего и вполне успешно применяется во всех физических приложениях математики, кроме, разве, космологических; в) вместе с тем имеет меньше всего отношения к бесконечности в более строгом ее понимании.
Практически-бесконечное означает «достаточно большое (малое, близкое, далекое)». Что считать здесь доста-точным, это всецело зависит от конкретных условий рассматриваемой задачи. Бесконечно большими в этом смысле могут быть и расстояния в 1013, и в 10– 13 см (первое в астрономии, второе — в физике элементарных частиц). С точки зрения математика (во всяком случае, представителя классической математики), первая величина ничуть не ближе к бесконечно большому, чем вторая, а вторая представляет бесконечно малую ничуть не в большей мере, чем первая.
Несмотря на кажущуюся примитивность понятия практической (физической) бесконечности, уже в связи с ним могут быть поставлены некоторые далеко идущие вопросы.
2.1.1. Уже здесь мы сталкиваемся с противоречивостью бесконечного, с необходимостью рассматривать взаимоисключающие противоположности в их нераздельном единстве.
Математика не допускает замены бесконечного каким бы то ни было конечным, сколь бы велико (мало) ни было последнее, поскольку они суть взаимоисключающие противоположности. Физика же делает такую замену буквально на каждом шагу, и получающиеся при этом результаты неизменно оказываются правильными. Этим демонстрируется весьма убедительным образом если не тождество, то единство противоположностей.
Можно задаться вопросом о том, какова физическая или общекосмологическая подоплека того, что это оказывается возможным, что здесь практический разум в силах преодолеть антиномию чистого разума?
Формальная сторона вопроса очевидна: замена бесконечного конечным возможна потому, что результаты, которыми интересуется физика, являются приближенными (хотя и «сколь-угодно» точными). Речь идет не об этом. Можно представить себе такое устройство Вселенной, при котором полем на «достаточно большом» расстоянии от источника нельзя было бы пренебречь в силу, например, слишком тесного расположения источников (идеализация: «начинка» Вселенной — совершенная сплошная среда). Возможно, что этот случай в какой-то мере реализуется даже в нашей Вселенной — в области очень малых пространственно-временных масштабов (и, соответственно, очень энергичных взаимодействий). Область применимости понятия практической бесконечности так или иначе ограничена также «сверху», в космологических масштабах.
Забегая вперед, можно высказать утверждение об ограниченной, в принципе, применимости и более полных (совершенных, строгих) понятий бесконечности.
2.1.2. Поскольку в определенных пространственно-временных масштабах оказывается возможным пользоваться вместо бесконечного достаточно большим или достаточно малым конечным, встает вопрос, не следует ли попытаться и в математике перекинуть некий мост через пропасть, отделяющую бесконечное от конечного?
Интересную попытку такого рода мы находим, например, у Бореля [357] в связи с проблемой вероятности и достоверности в тех случаях, когда в игру вступают числа «сверхастрономические». Проблема, которая, по-видимому, еще очень далека от решения, состоит в следующем: не должна ли математика быть «исправлена» в том смысле, чтобы такие «сверхастрономические» числа можно было бы считать не конечными, а бесконечными? В этом случае практическая бесконечность стала бы разновидностью, аспектом математической бесконечности.
357
Борель Э. Вероятность и достоверность. М., 1961.