Современная космология: философские горизонты
Шрифт:
Уже из того, что топология таит в себе по крайней мере формальную возможность замкнутости времени, видна ее связь с проблемой причинности и еще шире — закономерности и случайности. С другой стороны, связь с этой про-блемой просвечивает в том обстоятельстве, что физическую замкнутость можно интерпретировать в понятиях термодинамики и теории информации, для которых объединяющим является понятие энтропии, а связь энтропии с указанной проблемой общеизвестна. В следующем разделе эта гипотеза будет продвинута несколько дальше.
В заключение стоит отметить еще одну экзотическую особенность пространства-времени при шварцшильдовских плотностях вещества. Характерная черта найденных до сих пор систем отсчета, описывающих и внутренние, и внешние
2.5. Экстенсивная и интенсивная бесконечность. Еще мыслители античной эпохи пришли к выводу, что пространство может быть бесконечным не только «вширь» (экстенсивная бесконечность) но и «вглубь», в смысле бесконечной делимости (интенсивная бесконечность). Занимал их, кстати, главным образом этот второй аспект бесконечности, в котором были обнаружены апории, приковывающие вновь и вновь внимание математиков и философов вот уже более двух тысячелетий.
Считалось, что космологию интересует экстенсивная бесконечность. Сейчас этого утверждать уже нельзя. Есть явления (рассмотренные в предыдущем разделе), где она сталкивается с проблемами интенсивной бесконечности и даже с обоими аспектами сразу. Возможно, что именно на пути к бесконечно малому будет в конце концов получен тот синтез представлений квантовой теории и общей теории относительности, который является вожделенной целью теоретической физики.
Психологически кажется естественным ожидать, что расстояние, отделяющее 10– 13 см от нуля, преодолеть несравненно легче, чем расстояние, отделяющее 1027 см от бесконечности. Ведь последнее расстояние бесконечно велико, а первое практически бесконечно мало. Но опыт последних десятилетий научил нас иному: экспериментальные средства, с помощью которых можно сократить на порядок «путь, оставшийся до нуля», обходятся еще дороже, чем средства, увеличивающие на порядок путь, ведущий к бесконечности. Стоимость тех и других выражается уже почти «астрономическими» цифрами и имеет тенденцию быстро расти. Таким образом, мы убеждаемся очень наглядно в том, что раньше было ясно лишь умозрительно: для научного познания непройденный еще «к нулю» путь в 10– 13 см ничуть не короче, чем бесконечно длинный путь, ведущий в экстенсивную бесконечность. Ни тот, ни другой не будут исчерпаны всем будущим развитием науки за сколь-угодно большой конечный срок (при все убыстряющихся темпах развития науки!).
Важнейшая, имманентная черта, общая интенсивной и экстенсивной бесконечности, — неисчерпаемость. Чрезвычайно важно подчеркнуть, что речь не идет только о практической, технической или познавательной неисчерпаемости. Все это только следствия или формы проявления качественной неисчерпаемости, присущей бесконечности. Опыт физики и астрономии свидетельствует о том, что каждый раз при существенном изменении пространственновременных масштабов явлений, становящихся доступными для исследования, обнаруживаются качественно иные свойства, черты, закономерности; эти качественно различающиеся ступени или уровни как при движении в сторону больших, так и меньших масштабов, по-видимому, несчет-ны, не могут быть исчерпаны — не просто практически, но и принципиально, в возможности, в потенции.
Выдвигались (и выдвигаются) гипотезы, которые в психологическом аспекте могут быть квалифицированы как оптимистические, вселяющие утешительную надежду, что при движении в одну из сторон (меньшего или большего) или в обоих направлениях лестница качеств или, точнее, мер, поскольку качество оказывается тесно связанным с количеством, будет исчерпана, что существует определенная граница (снизу или сверху, либо и снизу, и сверху) «потоку бесконечного». Назовем такие гипотезы гипотезами конечности.
Для экстенсивной бесконечности примеры приводились выше. Это, например, идея замены бесконечного в математике очень большим, но конечным (в числовом выражении — «сверхастрономическим» числом), а в космологии — идея пространственно конечной Вселенной. Можно упомянуть еще точку зрения Гильберта, согласно которой бесконечность есть лишь идея (правда, очень плодотворная), но она нигде не реализуется.
Упомянем об аналогичных гипотезах в отношении интенсивной бесконечности (интенсивной конечности). В теории элементарных частиц предположение об интенсивной бесконечности пространства и времени влечет (на современном уровне наших знаний) за собой вывод об экстенсивной бесконечности энергии, массы, заряда, что считается неудовлетворительным не только в вычислительном, но и в принципиальном отношении. Для преодоления этой трудности выдвигаются различные варианты гипотезы о дискретности пространства и времени, о том, что не существует интервалов меньше определенной малой, но конечной протяженности. Еще более радикальной является гипотеза конечного (на взгляд докладчика, лучше сказать, счетного) континуума: пространство состоит из большого, но конечного числа точек.
Разумеется, как и в случае концепции конечной Вселенной, было бы совершенно неверно сводить причины появления таких гипотез к психологической, эстетической или идеологической области. Причина их появления прежде всего та, что они дают определенный эффект в физике, позволяют преодолеть или обойти определенные трудности, возникающие в ходе развития физических наук.
Надежда получить некое окончательное решение проблем пространственно-временного континуума с помощью гипотез конечности вряд ли оправдана. В этом отношении очень поучительна история релятивистской космологии.
Как известно, Эйнштейн надеялся вывести из своей теории тяготения однозначный вывод о пространственной конечности Вселенной. Но уже через несколько лет после появления этой теории A.A. Фридман показал, что она допускает как конечность, так и бесконечность Вселенной. В свете исследований последнего десятилетия стало ясно, что положение еще намного «хуже»: если бы даже и удалось доказать пространственную конечность (замкнутость), например, Метагалактики, то это вовсе не означало бы, что Вселенная сводится к Метагалактике. В физических приложениях, как мы видели, не только метрическая, но даже и топологическая замкнутость пространства далеко не абсолютна. Она означает всего лишь весьма сильную автономность данной физической системы. Если и «сверхзвезды», и Метагалактика суть антиколлапсирующие системы, то может существовать целая иерархия (в принципе, даже бесконечная иерархия!) замкнутых пространств.
Аналогичное положение может существовать и в микрофизике, словом, пространство может оказаться замкнутым не только сверху, но и снизу, в направлении бесконечно малого, но это также, вероятно, окажется не абсолютной, а относительной, физической замкнутостью.
Отсюда вместе с тем следует и полная правомерность изучения того, что могут дать гипотезы (постулаты) конечности в космологии и микрофизике. Это важно не только с точки зрения непосредственных физических приложений (релятивистская астрофизика), но и в интересах самой проблемы бесконечности. В силу «сопряженности» конечно-сти и бесконечности познание бесконечности предполагает выяснение смысла и пределов применимости понятия конечного (замкнутого).