Современная космология: философские горизонты
Шрифт:
Специально вопрос о логическом статуте бесконечности в релятивистской космологии исследует Э.М. Чудинов. Полученные им результаты, если я правильно их понимаю, могут быть резюмированы так. Бесконечность не выводима, не доказуема и не опровержима. Всякое доказательство бесконечности чего бы то ни было с самого начала предполагает существование чего-то бесконечного. При этом, разумеется, очень важно, чтобы в посылке не фигурировала та же самая бесконечность (тот же тип бесконечности), что и в выводе. Но, в конечном счете, утверждение о бесконечности всегда носит аксиоматический характер. Таково положение в классической математике. Но поскольку реляти-вистская космология использует именно такое понятие бесконечности — метрическое, являющееся частным случаем теоретико-множественного, —
Эти выводы очень важны, и к ним придется вернуться В § 4.
Состояние проблемы бесконечности в космологии определяется в любую заданную эпоху тремя обстоятельствами. Первое — это состояние проблемы в математике. Вследствие этого космология до середины прошлого века могла оперировать только понятием бесконечности как неограниченной протяженности. Второе — это физическая теория, связывающая свойства пространства-времени с физическими свойствами материи. Поскольку до Эйнштейна свойства пространства-времени считались независимыми от свойств материи, космология продолжала оперировать этим пониманием бесконечности вплоть до 1916 года. Можно было высказывать лишь догадки о том, что метрика и топология физического пространства могут быть неевклидовыми (Риман, Клиффорд, Клейн и др.). Третье — это возможность сравнивать космологические построения с данными наблюдений, т. е. сравнивать предсказания физической теории и через нее соответствующий математический эталон бесконечности с реальностью. Даже самая волнующая космологическая гипотеза не будет приниматься всерьез, пока не выясняются возможности ее наблюдательной проверки. Так было с теорией Фридмана до начала 30-х годов, и по этой же причине топология в космологии до сих пор мало популярна, хотя в принципе ее значение известно в течение полувека.
И все же то, что мы узнали о топологических свойствах пространства-времени за последнее десятилетие, уже требует принципиальных изменений в постановке космологической проблемы. Проблема ставилась так. В первом при-ближении свойства изученной части Метагалактики можно считать такими, что законно пользоваться понятием универсального для всей этой области («мирового») времени и однородного изотропного пространства. В этом случае по локальным свойствам пространства — по метрике — можно установить, конечно оно или бесконечно. Поскольку метрические свойства пространства (ее кривизну) можно установить по данным астрономических наблюдений, эти данные, если они достаточно точны, являются решением проблемы, Если, например, кривизна положительна, то пространство Метагалактики замкнуто, и Метагалактика и есть Вселенная.
В результате исследований, выполненных за последнее десятилетие, сейчас следует признать, что все намного сложнее. Замкнутость космической системы есть физическая замкнутость, из нее ни в какой мере не следует, что помимо такой системы ничего не существует. Сейчас известно около десятка «сверхзвезд», и каждая из них может иметь свое физически замкнутое пространство и свой собственный ритм времени, не связанный с ритмом времени в остальных частях Метагалактики. Так же может обстоять дело с самой Метагалактикой в ее отношениях с окружающей средой.
Поэтому мы должны разделить проблему бесконечности в космологии на две существенно различные части, две проблемы. Первая проблема — это проблема конечности или бесконечности конкретных космических систем, в частности, Метагалактики. Это чисто физическая проблема, относящаяся к компетенции релятивистский астрофизики и релятивистской космологии. Она может ставиться и решаться обычным, «стандартным» образом, т. е. так, как это обычно и делалось до сих пор, с той, однако, поправкой, что топологическая сторона вопроса приобретает почти решающее значение.
Вторая проблема или вторая часть проблемы — это несравненно более сложная проблема бесконечности Вселенной. Это пограничная проблема естествознания и философии. Она может решаться только общими усилиями физики, астрономии, математики и философии и не может решаться ни одной из этих наук в отдельности. Процесс решения этой проблемы не может состоять из конечного числа этапов и завершиться за конечное время возможного существования любой из цивилизаций (включая земную). Но этим не уменьшается научное и мировоззренческое значение тех частных и попутных результатов, которые получаются в ходе решения проблемы.
Если бы мы даже могли каким-то образом узнать решение, соответствующее уровню знаний, скажем, середины XXI века (не говоря уже об «окончательном» решении), от этого не было бы никакой пользы. Учитывая темп развития науки, мы смогли бы воспользоваться этим решением наверное не в большей мере, чем первобытный человек смог бы воспользоваться найденным в лесу реактивным самолетом.
Содержание понятия бесконечности изменялось очень мало на протяжении двух тысячелетий — от античности до XVII и даже XIX века. Но за последние сто, пятьдесят и десять лет оно претерпело весьма существенные изменения. Экстраполяция на ближайшее будущее позволяет предсказать, что в ближайшие полтора десятка лет будет сделано больше научных открытий, чем за всю предыдущую историю человечества. Вполне естественно ожидать, что за этот срок и понятие бесконечности в математике, космологии и, будем надеяться, философии претерпит новые достаточно существенные изменения.
4.1. Природа понятия бесконечности. Все сказанное выше вряд ли оставляет место для сомнения в том, что бесконечность — понятие математическое. Оно проникает всю математику. Более того, можно, как это делает Вейль, определить саму математику как науку о бесконечном [374] .
Космология использует это же математическое понятие бесконечности. Но как обстоит дело с философией?
К ответу на этот вопрос целесообразно подойти несколько кружным путем.
374
Вейль Г. О философии математики, М.-Л. 1934. С. 9 и 90.
4.2. Беглый исторический экскурс в философию бесконечного. Нет сомнения, что в течение очень длительного времени философы (Анаксагор, Зенон, школа Демокрита, Аристотель, Августин и др.) вносили больший вклад в решение проблемы бесконечности, чем математики. Начало «современному» этапу в развитии учения о бесконечном положили независимо друг от друга математики (Риман, Кантор) и философы-диалектики (Гегель, Энгельс). Однако с этого времени прогресс в математике был непрерывным и все ускоряющимся, тогда как в философии, по-видимому, не появилось ничего существенно нового. Возник все увеличивающийся разрыв.
Заслугой Гегеля было то, что он ясно почувствовал неполноту современного ему понятия бесконечности, бесконечности как отрицания конечности, как неограниченности. Он называл такую бесконечность «дурной» (неразумной) и противопоставлял ей истинную (разумную) бесконечность. Приводимые Гегелем примеры истинно бесконечного (окружность, уравнение кривой) в ретроспективной оценке следует признать неудачными, но сама постановка вопроса была правильной и предвосхищала последующее развитие математики. Астрономия «достойна изумления не вследствие такой (неразумной — Г.Н.) количественной бесконечности, а, напротив, вследствие тех отношений меры и законов, которые разум познает в этих предметах и которые суть разумное бесконечное в противоположность указанной неразумной бесконечности [375] ». Разумное бесконечное, в отличие от неразумного, должно быть «положительным и наличным», т. е., как мы сказали бы сейчас, актуальным, а не потенциальным.
375
Гегель. Соч. Т. V. М., 1937. С. 267.