Чтение онлайн

на главную - закладки

Жанры

Современная наука и философия: Пути фундаментальных исследований и перспективы философии
Шрифт:

В электродинамике центральным понятием было понятие электромагнитного поля. Магнитное поле вызывается изменением электрического поля, электрическое – изменением магнитного поля. Поэтому, когда где-нибудь возникает переменное электрическое поле, оно индуцирует магнитное, которое в свою очередь оказывается переменным, индуцируя электрическое поле, и тем самым начинают распространяться электромагнитные колебания. К концу XIX века уже было известно, что частям видимого спектра соответствуют электромагнитные волны различной частоты, причем электромагнитные волны с большей частотой, чем те, которые дают фиолетовый свет, – это невидимое ультрафиолетовое излучение, а за волнами меньшей частоты, дающими видимый красный свет, простирается область электромагнитных волн еще меньшей частоты – невидимое тепловое, инфракрасное

излучение. В самом конце века стали известны волны с еще большими частотами, чем в ультрафиолетовой части спектра, – рентгеновские лучи и гамма-излучение радия. За инфракрасными лучами были открыты волны во много раз меньшей частоты и соответственно с большей длиной волны – радиоволны, нашедшие применение в последние годы прошлого столетия.

Электродинамические и оптические процессы ученые стремились объяснить по аналогии с механическими процессами. Основой этой тенденции была гипотеза эфира. Волны в эфире – это свет и все другие электромагнитные волны. Таким образом, понятие электромагнитного поля как будто не выходило за рамки механического представления о телах, которые передвигаются в пространстве, притягивая и отталкивая друг друга, не выходило за рамки простой, непротиворечивой, традиционной картины мира.

Гипотеза эфира была как бы выражением «викторианской» тенденции в науке. Имя долго царствовавшей английской королевы Виктории стало в XIX веке символом традиционности и устойчивости. В науке было немало «викторианских» понятий, исключавших «беспокойство». С их помощью приходили к выводу, что она развивается путем непротиворечивой логической и экспериментальной конкретизации некоторых абсолютно устойчивых исходных аксиом. По это не всегда удавалось. В частности, эфиру приходилось приписывать весьма противоречивые свойства. С ним было много хлопот. М. Планк говорил, что эфир – это «дитя классической физики, зачатое во скорби».

Очень тяжелым испытанием теории эфира была невозможность зарегистрировать движение тел относительно эфира. Если тела при своем движении увлекают эфир, то свет должен распространяться в движущейся системе с одинаковой скоростью туда и обратно (как пловец в бассейне на движущемся корабле будет пересекать этот бассейн в длину с одной и той же скоростью, проплывая это расстояние за одно и то же время и вперед – по движению корабля, и назад – от носа корабля к корме). Но в данном случае свет будет распространяться в этой системе с иной скоростью, чем его скорость в недвижущейся системе, т. е. в неподвижном эфире, и различие можно будет заметить. Если же движущиеся тела не увлекают эфир, то свет будет распространяться с различной скоростью вперед и назад в движущейся в эфире системе (как пловец будет с различной скоростью плыть вперед и назад в движущемся решетчатом бассейне, сквозь который свободно проходит не увлекаемая бассейном вода).

Однако многочисленные эксперименты не продемонстрировали разницы скорости света ни по отношению к данной системе, ни по отношению к внешнему пространству. Таким образом, оба предположения оказались экспериментально не подтвержденными. Нельзя говорить, что тела при своем движении увлекают эфир, и нельзя говорить, что тела движутся в эфире, не увлекая его. Мы вернемся к этой коллизии немного позже, при характеристике теории относительности. Пока же отметим, что в конце XIX века эта ситуация внушала смутные опасения, но не давала повода для решительного отказа от эфира, не укладывавшегося в норму поведения, свойственную обычным телам.

В целом наука XIX века склонялась к мысли о законченной картине мира, к представлению о том, что эта картина мира завершена в ее фундаментальных основах. Английский физик Дж. Дж. Томсон утверждал, что науке осталось лишь уточнять детали, поскольку в основном человек уже знает, как устроен мир. Конечно, такой крайний взгляд не был общим. Многие понимали, что перед наукой бесконечный путь преобразования фундаментальных идей. Но и сам Томсон, говоря о безоблачном небе науки, указывал на два облака: затруднения теории теплового излучения и отсутствие изменения скорости света в движущихся телах. Из этих облаков и грянул гром. А пока он не грянул, наука XIX века могла к окончанию столетия предъявить весьма внушительную схему мироздания.

В основе этой схемы лежит идея сохранения основных законов бытия при переходе от одного звена иерархии

вещества к другим, от атома к молекуле, от молекулы к макроскопическим телам, в частности к живому организму, затем к планетам, к солнечной системе, к звездам, к галактике.

В начале этой иерархии находится атом. Атомы считались твердыми шариками, обладающими различной массой и различными физическими и химическими свойствами. Было известно несколько десятков различных типов атомов, различных элементов, входящих в периодическую таблицу. На исходе столетия стали известны электроны – минимальные заряды электричества. Возникло представление о субатомах – частицах меньших, чем атом. Такими частицами служили электроны. Это, однако, не могло нарушить спокойствия. Принципиальная возможность дальнейшего перехода к телам «меньше атома» и «больше галактики» всегда допускалась. Еще в начале нашего столетия по поводу электронов повторяли старые концепции бесконечной иерархии, которая тянется в обе стороны, причем структура все больших включающих и все меньших включенных систем одна и та же.

Второе звено иерархии – молекула. В течение XIX века химия узнала о структуре громадного количества сложных веществ и определила состав их молекул. О природе сил, связывающих атомы в молекулы, знали так же мало, как о природе различий между атомами. Но об этом не слишком беспокоились. Наука могла идти вперед, не углубляясь в эти вопросы. То же можно сказать и о больших, включающих системах. Что касается живых организмов, то наука всесторонне изучила макроскопические законы естественного отбора, но остановилась перед проблемой наследственности и изменчивости организмов. Благодаря Г. Менделю стали известны некоторые законы наследственности, но природа их не была раскрыта. Теория Дарвина представлялась мощной демонстрацией универсальности классической науки. Она показала, что материя, состоящая из дискретных частей, обладающих свойствами притяжения и отталкивания и подчиняющихся в своем поведении законам классической механики, может эволюционировать и дойти до высокоорганизованных структур, до той целесообразности, которая всегда поражала людей при взгляде на органический мир.

Дальше простирались еще более высокие звенья иерархии – солнечная система, само Солнце, еще дальше – звезды, а еще дальше – внегалактические туманности, иные галактики. Этот мир казался царством Ньютона. Однако и здесь были некоторые недоразумения. Вселенная представлялась бесконечной, и в этом случае небесным телам угрожали бесконечно большие силы тяготения, действующие в бесконечной по протяженности, заполненной тяжелыми телами Вселенной. Свет бесконечных звезд должен был превратить небо в сплошную сверкающую пелену. Но идея конечности доступной исследованию Вселенной не возникала.

В целом XX век застал очень стройное и, казалось, достоверное в своей основе здание науки предыдущего столетия. В XX веке это здание не было разбито. Оно только зашаталось, и научная революция нашла для него новый фундамент, на котором старые знания получили ограниченное место. Это следует подчеркнуть. Научная революция не была очищением площадки для нового строительства. В науке не бывает катаклизмов, которые Ж. Кювье видел в прошлом Земли. История науки – непрерывный процесс. Н. Бор в начале нашего столетия, создавая модель атома, выдвинул принцип соответствия: при некоторых предельных условиях соотношения квантовой механики переходят в соотношения классической механики. Теория относительности Эйнштейна в случае медленных движений и процессов, при которых поглощаются или выделяются не слишком большие энергии, приходит к соотношениям механики Ньютона. Наука XX века подошла к классическому наследству как к совокупности теорий, уже не являющихся абсолютно справедливыми, абсолютно точными и абсолютно общими. Они становятся относительными и ограниченными, но получают более солидное обоснование.

Что застает в науке XXI век? Об этом трудно сказать – развитие науки приобрело такую стремительность, что за оставшиеся два десятилетия может произойти много неожиданного. Но кое-что можно сказать с большой достоверностью.

Как уже говорилось, XX век застал науку в виде стройного здания, претендующего на длительное сохранение без дальнейших перестроек. XXI век застанет науку далеко не в столь законченном и стройном виде. Здесь мы подходим, быть может, к самой важной особенности науки нашего века.

Поделиться:
Популярные книги

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Эксперимент

Юнина Наталья
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Эксперимент

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Шестое правило дворянина

Герда Александр
6. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Шестое правило дворянина

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Live-rpg. эволюция-4

Кронос Александр
4. Эволюция. Live-RPG
Фантастика:
боевая фантастика
7.92
рейтинг книги
Live-rpg. эволюция-4