Статистика: учебное пособие
Шрифт:
Коэффициент осцилляции рассчитывается по формуле:
В нашем примере эти показатели составляют:
Все рассчитанные относительные показатели вариации свидетельствуют также о более сильной вариации времени обработки деталей рабочими первой бригады по сравнению со второй, где среднее время обработки является более объективной, более типичной характеристикой работы данной бригады в целом, т. е. вторая бригада как совокупность
Относительные показатели вариации, как уже было отмечено, позволяют сравнивать степень вариации признаков, имеющих одинаковые единицы измерения, но разные уровни средних. Например, урожайность зерновых культур и картофеля хотя и имеют одинаковые единицы измерения, но по абсолютным показателям вариации этих признаков сравнивать было бы неправильно, так как сами уровни урожайности зерновых и картофеля резко отличаются. Так, например, в регионе среднеквадратическое отклонение составило: по урожайности ржи – 5 центнеров с гектара (ц/га) и по урожайности картофеля – 20 ц/га, а сама урожайность ржи составила 25 ц/га, а картофеля – 200 ц/га. Коэффициент же вариации соответственно равен:
Это означает, что по урожайности картофеля совокупность хозяйств данной области более однородна, чем по урожайности ржи, т. е. урожайность картофеля более устойчива, чем урожайность ржи.
Сравнение абсолютных показателей вариации одного и того же признака разных совокупностей иногда приводит к иному выводу, чем при сопоставлении относительных показателей вариации.
Так, если в одной совокупности абсолютный показатель вариации больше, чем в другой, и средний уровень изучаемого признака в ней также значительно больше, чем в другой, то относительный показатель вариации может быть ниже.
Так, например, если среднее квадратическое отклонение урожайности ржи в одном районе составило 5 ц, в другом – 3 ц, а сама средняя урожайность, соответственно, составила 25 и 10 ц/га, то относительные показатели вариации приводят к иному выводу.
Следовательно, рост урожайности, связанный с некоторым повышением абсолютного показателя вариации, может и не снизить ее устойчивости.
Относительные показатели вариации необходимы также и для сравнения вариации различных признаков, имеющих разные единицы измерения, поскольку абсолютные показатели вариации в этом случае не могут быть использованы как мера вариации.
Например, при сравнении вариации урожайности и себестоимости той или иной культуры нельзя использовать абсолютные показатели вариации, так как они будут иметь разные единицы измерения: ц/га и руб. за 1 т. В этом случае целесообразно среднее квадратическое отклонение использовать для расчета так называемого нормированного отклонения:
характеризующее отклонение индивидуальных значений признака от средней (Xi – X) и приходящееся на единицу среднего квадратического отклонения. Нормированное отклонение позволяет сопоставлять между собой отклонения, выраженные в различных единицах измерения. Практически нормированные отклонения изменяются в пределах от 0 до 3.
Однако в совокупности могут встречаться отдельные единицы, у которых t > 3. Это будет свидетельствовать о неоднородности совокупности, и такие единицы совокупности целесообразно исключить как аномальные, нетипичные для данной совокупности.
Если совокупность мала (3 <= n <= 8), то однородность совокупности, т. е. проверку годности первичных данных, можно осуществить следующим образом. Вычисляют показатель, характеризующий отношение разности между сомнительным и соседним значениями ранжированного в порядке возрастания ряда к разности между крайними значениями, т. е.:
если вызывает сомнение первое в ряду значение признака, и:
если вызывает сомнение последнее в ряду значение признака.
Вычисленную величину Q сопоставляют с табличным ее значением для данного числа наблюдений и уровня вероятности. Если Qф > Qтабл, то сомнительное значение следует исключить из обработки. Если же Qф < Qтабл, то сомнительное значение не отбрасывается. Рассмотрим эту методику на примере.
Допустим, получены следующие результаты содержания золы в образцах корма в процентах: 2,25; 2,19; 2,11; 2,38; 2,32 и 3,21.
Располагаем данные анализа в порядке возрастания их значений: 2,11; 2,19; 2,25; 2,32; 2,38; 3,21.
Вычисляем:
Далее находим Qтабл для n = 6 и вероятности p = 0,99 (табл. 4).
Таблица 4. Значения Q в зависимости от степени надежности (p)
и общего числа значений признака (n)
Величина Qтабл= 0,70. Следовательно, значение 3,21 должно быть исключено как нетипичное для данной совокупности.
При числе значений признака больше трех (и больше восьми) можно использовать другую методику определения пригодности первичных данных. По всем значениям признака в совокупности сначала рассчитывают среднюю величину (Х) и среднее квадратическое отклонение , затем на основании разницы (без учета знака) между максимально отклоняющимся значением (Xmax) и средней величиной находят величину критерия Rmax по формуле:
Значение Rmax сопоставляют с табличным его значением при данном числе значений признака для вероятности p = 0,99 (табл. 5).
Если Rmax > Rтабл, то сомнительное значение (X) следует исключить, если же Rmax < Rтабл, то значение (Xmax) следует принимать в расчет.
При n > 20 показатель Rmax 3 и условие пригодности имеет вид: