Чтение онлайн

на главную - закладки

Жанры

Стратегии развития научно-производственных предприятий аэрокосмического комплекса. Инновационный путь
Шрифт:

Экономическая оценка результатов в t– м году составит

а текущих затрат:

Величина, определяющая разность результатов и затрат для t– го года в критерии оптимальности, рассчитывается по формуле:

В полученной модели особый интерес

представляет компактность формулировки критерия оптимальности. Достигнуто это благодаря тому, что текущие затраты на содержание и эксплуатацию оборудования, бытовых помещений, а также заработную плату отнесены к стоимости машино-часа содержания и эксплуатации единицы оборудования. Исключение составляют текущие затраты на содержание и эксплуатацию производственных помещений. Такое исключение является объективно необходимым. Это связано с тем, что оплата аренды производственных помещений по своему экономическому смыслу отличается от затрат на содержание и эксплуатацию собственных площадей предприятия.

Полученная экономико-математическая модель является частично целочисленной, поскольку в ней используются непрерывные и целочисленные переменные, а ограничения и критерий оптимальности имеют нелинейный вид. Поэтому реальное решение задачи обновления производства с помощью предлагаемой модели затруднительно. Однако полученная экономико-математическая модель полезна в качестве компактного описания взаимодействия факторов, влияющих на принятие оптимального решения.

В то же время при решении конкретных задач, возникающих на стадии обновления производства, уровень неопределенности исходных данных практически всегда гораздо ниже, чем предусмотрено формулировкой решаемой задачи. В конкретной ситуации всегда известно, работает НПП на свободный рынок или существует совокупность предложенных предприятию заказов с заранее оговоренной ценой.

В других случаях предприятие уже знает и зафиксировало предполагаемый уровень автоматизации различных групп оборудования. Например, в условиях избыточности рынка труда уровень автоматизации следует принимать как минимальное значение, при котором обеспечивается конкурентоспособность продукции предприятия. Это обусловлено тем, что затраты на возмещение капитальных вложений и текущих затрат, связанных с автоматизацией, не будут окупаться вследствие достаточно низкой заработной платы работников. При тех же условиях аренда производственных помещений, как правило, становится для предприятия экономически нецелесообразной. Поэтому необходимо рассмотреть упрощенные модификации модели для конкретных условий обновления производства.

При заданной программе выпуска продукции в экономико-математической модели из рассмотрения исключаются переменные xit. Тогда ограничение 1 приобретает следующий вид:

где Nitзаданный объем выпуска i– го изделия в году t.

Автоматически во всех остальных ограничениях величины xit будут заменены на Nit. Ограничение по фондам времени используемых групп технологического оборудования не изменит своего вида с точностью до замены xit на Nit. Ограничения по производственной площади, объему дополнительных капитальных вложений не изменятся.

Критерий оптимальности изменится незначительно – выручка от реализации продукции в критерии оптимальности станет заданной постоянной величиной. Поэтому существенных изменений в характере экономико-математической модели, а также в возможностях ее численной реализации не произойдет.

При заданном уровне автоматизации модель должна учитывать два варианта функционирования НПП: в условиях рыночной реализации продукции и работы предприятия на заказ. В первом случае ограничения экономико-математической модели и целевая функция будут иметь следующий вид:

Тогда величина, определяющая разность результатов и затрат для t-го года в критерии оптимальности, рассчитывается по следующей формуле:

Во втором случае в экономико-математической модели из рассмотрения исключаются величины bHit и bBit, а xit=Niti =

, t =
. Остальные ограничения сохранят предыдущий вид. Величина, определяющая разность между результатами и затратами для t– го года в критерии оптимальности, может быть записана следующим образом:

Рассмотренные варианты упрощений существенно не отличаются от первоначального варианта модели с точки зрения перспектив реализации. Все варианты упрощений модели остаются смешанными и нелинейными, не облегчая нахождения численного решения. Поэтому целесообразно рассмотреть максимально допустимые упрощения первоначально полученной экономико-математической модели.

Допустим, что ориентировочно известны интервал объема выпуска продукции по каждой позиции номенклатуры и соответствующая цена. Обозначим нижнюю границу интервала значений объема выпуска i– го изделия символом ni, а верхнюю – Ni. Тогда ограничение 1 в модели будет иметь следующий вид: xi >= ni,, xi < Ni, i =

. Такое преобразование переводит ограничение 1 в линейную область.

Аналогично преобразуется к линейному виду ограничение 2. Зафиксируем технологический процесс обработки деталей g– й группы. Тогда автоматически фиксируется и уровень автоматизации r используемого в этом технологическом процессе оборудования. Такая фиксация не означает, что все технологическое оборудование j– й группы будет иметь один и тот же уровень автоматизации. Напротив, разбиение технологического оборудования на группы станет более мелким, а понятие группы оборудования приобретет большую детализацию. Это означает, что элементы j– й группы технологического оборудования с разным уровнем автоматизации будут теперь относиться к разным группам оборудования. Таким образом, индексы k и r в модели из рассмотрения исключаются, а ограничение 2 примет следующий вид:

где gj – трудоемкость обработки деталей – представителей g– й группы на j– й группе технологического оборудования в новой трактовке этой группы.

Переменная yj во вновь сформулированном ограничении приобретает новый смысл. Она будет означать не искомое количество технологического оборудования j– й группы для выполнения программы производства, а используемое количество оборудования этой группы. При этом величина yj заранее ограничивается наличным или допустимым к использованию количеством оборудования в данной группе Yj.

Поделиться:
Популярные книги

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

По дороге пряностей

Распопов Дмитрий Викторович
2. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
5.50
рейтинг книги
По дороге пряностей

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец