Тайна Бога и наука о мозге. Нейробиология веры и религиозного опыта
Шрифт:
Сторожевой пес: миндалевидное тело
В средней части височной доли находится миндалевидное тело – также одна из древнейших структур мозга, которая контролирует, иногда в качестве посредника, буквально все эмоциональные функции высшего порядка [60] . Она достаточно сложна, чтобы выявлять и выражать утонченные эмоциональные реакции, такие как любовь, привязанность, дружелюбие и недоверие. Она также осуществляет важную функцию надзора, используя богатые нейронные сети, связывающие эту структуру с другими отделами мозга. Миндалевидное тело с помощью этих связей следит за сенсорными стимулами, циркулирующими по мозгу, и ищет такие данные, которые требуют ответного действия – признаков открытой возможности или опасности либо чего-то еще, на что реагирует ума.
60
Об
Найдя стимул, достойный нашего внимания, миндалевидное тело начинает анализировать его значение в самом общем виде, а затем направляет на него внимание ума, придав стимулу эмоциональную ценность. Так, если ночью вы слышите подозрительный шум, это означает, что именно миндалевидное тело посредством системы возбуждения участило ваше сердцебиение и запустило реакцию страха, заставившую вас открыть глаза. В случае позитивных стимулов – скажем, когда мы вдыхаем запах еды или сталкиваемся с привлекательным сексуальным партнером, – происходит нечто подобное: миндалевидное тело побуждает мозг обратить внимание на нужные стимулы, придав им определенное эмоциональное значение.
Такой механизм наблюдения продемонстрировали эксперименты с животными, у которых электрическая стимуляция миндалевидного тела вызывала быстрые движения глаз и головы, как будто животное чего-то ищет [61] . Животное при этом как-будто чего-то тревожно ожидало, его сердце начинало чаще биться, учащалось дыхание, менялись и другие показатели, указывающие на возбуждение. Исследования мозга методами визуализации также показали, что при возникновении возбуждения усиливается активность миндалевидного тела.
61
См.: Halgren 1992.
Эта способность миндалевидного тела запускать возбуждение через автономную систему выполняет ключевую роль в генерации эмоций человека, но миндалевидное тело не оказывает непосредственного влияния на автономную систему. Вместо этого оно активизирует гипоталамус, который в свою очередь влияет на активность автономной нервной системы. [62]
Дипломат: гиппокамп
В височной доле за миндалевидным телом располагается гиппокамп, он в значительной мере зависим от активности миндалевидного тела, и две эти структуры часто взаимодействуют, дополняя одна другую; благодаря такой их совместной деятельности ум реагирует на определенные сенсорные стимулы, и генерируются эмоции, которые связаны с определенными образами, воспоминаниями и обучением. [63]
62
Подробнее о том, как миндалевидное тело и гипоталамус включают реакцию возбуждения, см.: Kandel, Schwartz, and Jessell 2000.
63
Подробнее о том, как гиппокамп связывает эмоции с образами и воспоминаниями, см.: Joseph 1996.
Вероятно, гиппокамп также управляет работой другой части лимбической системы – таламуса. Гиппокамп – как сам, так и при сотрудничестве с таламусом – часто может блокировать поступление сенсорной информации к различные участки неокортекса [64] . Кроме того, гиппокамп может управлять реакциями умиротворения и возбуждения автономной нервной системы, чтобы избежать резкого перевозбуждения и поддерживать эмоциональное равновесие. В отличие от миндалевидного тела и гипоталамуса, сам гиппокамп непосредственно не участвует в генерации эмоций, но, оказывая регуляторное воздействие на различные важнейшие части мозга, значимым образом влияет на состояние ума человека.
64
Подробнее о том, как гиппокамп при сотрудничестве с таламусом блокирует поступление сенсорных импульсов, см.: Kandel, Schwartz, and Jessell 2000 либо Joseph 1996.
Эмоциональный мозг, его главный контролер, сторожевой пес и дипломат все вместе строят наше восприятие повседневной реальности и, вероятнее всего, играют наиважнейшую роль в формировании духовных переживаний. Кроме того, эти материальные структуры сложным образом взаимодействуют с другими частями мозга, чтобы осуществлять высшие функции ума и создавать такие мысли и представления, которые выделяют человека изо всех других живых существ.
Как
Давайте снова вспомним о роботе из второй главы с его неуверенными замедленными движениями, который неспособен повторить путешествие от одной стороны комнаты к другой, чтобы открыть дверь. Когда исследователи поместили на дверь нехитрый знак в форме крестика, робот не смог довести до конца и свое второе путешествие. Мы же, люди, игнорируем такой знак и без особого труда находим дверь.
В любой момент мы можем отодвинуть в сторону все, что отвлекает, и не потеряться в море психических и внешних стимулов, чтобы создать точную и реальную картину мира, находящегося за пределами нашего черепа. Тем не менее с точки зрения фундаментального уровня взаимодействия с миром примитивный «мозг» робота решает ту же проблему, что и мозг человека: нам нужно понять значение и важность непрестанно поступающих сенсорных сигналов, которые бурным потоком поступают в наш мозг в каждый момент существования.
Мы отличаемся от робота тем, что разные части нашего мозга обмениваются информацией и взаимодействуют с потрясающей быстротой. Этот поразительный феномен нам демонстрируют дети. Если, например, дома у маленького ребенка есть рыжая с белым кошка, увидев большого черного пса, он может назвать его «кисой». Но он же никогда не назовет «кисой» пушистую рыжую с белым подушку, лежащую на его кровати. Если бы вся сенсорная информация, поступавшая в его мозг, имела равную ценность (как это происходит в случае робота), можно было бы ожидать прямо противоположного. Однако малыш может понимать, что кошка больше похожа на собаку, чем на подушку. Эти богатые перцепции в мозге создаются в тех частях, которые связывают разные области мозга, получающие и анализирующие информацию. Такие сложные структуры мозга создают живую картину окружающего мира и позволяют нам уверенно и эффективно взаимодействовать со средой.
Эти области мозга можно, пользуясь образным языком, назвать неврологическими якорями ума. Они также поддерживают действия некоторых «когнитивных операторов» – этот термин мы с Джином придумали для описания самых общих аналитических функций человеческого ума [65] . Понятие «когнитивные операторы» плохо поддается описанию. Проще говоря, это те функции, которые дееспособный ум в состоянии выполнить и готов выполнять.
Мы отличаемся от робота тем, что разные части нашего мозга обмениваются информацией и взаимодействуют с потрясающей быстротой
65
Сначала мы разработали концепцию когнитивного оператора для того, чтобы описывать общие функции мозга. Она близка к концепции когнитивных модулей, поскольку те также и исполняют определенные функции, и локализованы в определенном отделе (или отделах) головного мозга. Тем не менее мы будем продолжать использовать термин когнитивный оператор, поскольку он указывает на то, как в целом мозг поступает с различными сенсорными или когнитивными данными. Следует заметить, что все свидетельства о работе когнитивных модулей можно отнести и к когнитивным операторам. Мы продемонстрируем, что когнитивные операторы, представленные в данной книге, – это по сути особые способы обработки информации мозгом, неотъемлемая часть функционирования мозга. Таким образом, мы вправе считать, что есть надежные биологические и эволюционные причины для существования когнитивных операторов (модулей). Martin, Ungerleider, and Haxby (2000) утверждают, что известны предшествовавшие речи способы «обработки и хранения информации о форме, цвете, изменении и движении», а также, вероятно, о «пространстве, времени, количестве и аффективной ценности». Как мы увидим, представление о когнитивных операторах соответствует этому описанию.
Сами по себе они не тождественны структурам мозга: когнитивные операторы – это коллективные функции различных мозговых структур. Например, если мы скажем, что количественный оператор (оператор, занимающийся числами и математическими данными, который помогает нам использовать их в повседневной жизни) помогает нам решить сложную математическую задачу, мы имеем в виду, что все структуры мозга и задействованные здесь функции исполняют свою работу. [66]
66
Когнитивные операторы отличаются от когнитивных модулей – последний термин использует, например, такой нейробиолог, как Steven Pinker (1999). Как нам кажется, второй термин описывает более конкретные функции, которыми занимаются конкретные мозговые структуры. Так, скажем, математический модуль – это лишь определенный набор функций, связанных с основами арифметики, тогда как количественный оператор включает в себя сразу широкий спектр функций мозга, имеющих отношение к математике.