Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Чтобы качественно оценить каждый из этих пара­метров, необходимо знать, как отличаются количест­венные характеристики друг от друга. Для этого вос­пользуемся шкалой оценки цифровых ячеек и линий.

Шкала качественной оценки цифр и линий

1. Цифр НЕТ — означает, что качество, заданное цифровой ячейкой или линией, не проявляет себя, так как оно отсутствует.

2. ОДНА цифра — качество слабое, но при этом человек, часто не осознавая этого, стремится пока­зать, что оно у него присутствует, и очень сильно.

3. ДВЕ цифры — качество нормально развито и достаточно активно в проявлении.

4. ТРИ цифры — качество имеет волнообразный характер, оно то резко слабеет, то неожиданно возра­стает до очень высокого

значения. Такое состояние называют «экстро», оно возникает по необходимости.

5. ЧЕТЫРЕ цифры — очень хорошо развитое ка­чество, оно сильное, но еще не предел.

6. ПЯТЬ цифр — максимальная сила качества, очень часто оно может подавлять другие характерис­тики, что мешает человеку.

7. ШЕСТЬ И БОЛЕЕ цифр — переразвитие, пе­регрузка качества, когда оно резко слабеет и может проявить себя в полной силе только при определен­ных условиях. Обычно рассчитывается как качество, которое получится, если из исходного числа отнять 5 (пять). Например: 6 цифр, — примерно как 1; 7 цифр — примерно как 2.

Для удобства и наглядности попытаемся найти ге­ометрические интерпретации всех изложенных выше количественных характеристик цифр.

Цифр нет. Это означает, что мы имеем плоскость, где не выделено ни одной точки, или для простоты бу­дем говорить, что данная плоскость «пустая» (рис. 1).

Сказать, что мы при этом ничего не имеем, нель­зя, так сама плоскость а существует, но интересую­щее нас качество так сильно удалено от нас, что в не­которой окрестности мы его не обнаруживаем, а следовательно, применить его не можем, так как энерге­тически оно недостижимо. Удивительно, но в этом случае можно говорить, что данное качество отсутст­вует или оно бесконечно далеко удалено, — это фак­тически одно и то же, поскольку на данной плоско­сти мы его не обнаруживаем. Если характеристика задана пустой ячейкой или линией, то это означает, что для активизации качества требуется слишком много энергии и именно из-за этого человек не ис­пользует данную характеристику. Внешне это выра­жается как полное отсутствие названного качества.

Если говорить геометрическим языком, то этот слу­чай можно записать так: указанная характеристика неопределена в своей размерности — dim (размер­ность) неопределена.

Одна цифра.На плоскости (определена единствен­ная точка А (рис. 2).

Единственность точки А делает ее уникальной или выделенной на плоскости, что и характеризует качества, заданные одной цифрой, как слабые, но стремящиеся к выделению и показу, словно одна точка — очень слаба, но она одна-единственная на плоскости. Геометрически это соответствует нулевой размерности dim=0 (это точка на плоскости).

Интересно, что нулевая размерность еще более от­четливо показывает слабость качества, заданного одной цифрой.

Две цифры.На плоскости заданы две точки А и В, которые неизбежно задают прямую АВ или ВА в за­висимости от начальной точки (рис. 3).

Особенности прямой заключаются в том, что она однозначно определяет направление движения, что говорит об определенности и конкретности пути. Для качеств, характеризующихся двумя цифрами, это оз­начает свободу их проявления в любой ситуации, что и будет означать естественную норму: появляется не­обходимость в проявлении того или иного качества и человек свободно делает это. С геометрической точки зрения, мы имеем одномерное пространство dim=1, которое еще раз подчеркивает однозначность в воз­можности применения качества.

Три

цифры.Как известно, три точки задают кон­кретную плоскость, но в нашем случае более важно, что они определяют некоторую площадь S, ограни­ченную периметром треугольника ABC (рис. 4).

Особенность случая заключаются в том, что из любой вершины треугольника мы можем наблюдать два равноценных направления на две другие верши­ны, что создает затруднение в выборе очередности в движении к одной из вершин фигуры. Точно такие же затруднения в проявлении конкретного качества испытает и человек, если данное качество задано тремя цифрами. Он как бы выжидает внешнего «на­падения» или изменения, которое однозначно опре­делило бы выбор движения. Можно сказать, что че­ловек проявляет свое качество только в том случае, когда у него не остается выбора и приходится дейст­вовать. Стоит отметить, что сила проявления качест­ва резко возрастает, так как мы имеем значительное усиление качества, отраженное площадью S треу­гольника ABC. Как только человек израсходует качество (весь его запас), он вновь будет ждать экстре­мальной ситуации, когда снова можно «выплеснуть запасы качества». Интересно, что для этого ему при­дется накопить силы для такого неожиданного и сильного проявления качества. С геометрической точки зрения мы рассматриваем двухмерное прост­ранство dim=2, что характеризует плоскости и пло­щади фигур.

Четыре цифры. В данном случае мы вынуждены выйти за пределы плоскости, так как только в этом случае мы сможем качественно изменить ситуацию, а не задавать новую плоскую фигуру (рис. 5а, б).

Как вы хорошо видите из рис. 5, в случае «б» имеется плоская фигура, что возвращает нас к пре­дыдущему случаю, когда качество задается плоско­стью, или dim=2. В случае «а» ситуация резко меня­ется, так как появляется новая размерность dim=3 (трехмерное пространство). Из точки А (вершина пи­рамиды) мы видим весь треугольник основания BCD, что в какой-то степени делает ситуацию схожей со случаем двух точек на плоскости, которые определя­ли прямую АВ. Именно поэтому случай с четырьмя цифрами также стабилен в своем проявлении качества, как и при двух цифрах. Различие заключается только в том, что сила самого качества резко увели­чивается до объема пирамиды V.

Пять цифр. Так как в предыдущем случае мы уже затронули максимальную для человека размер­ность dim=3 (трехмерное пространство), то в случае пяти точек нам будет очень сложно найти качествен­но новое решение, однако мы постараемся это сде­лать. Известно, что в геометрии существует теорема, утверждающая, что любые 5 (пять) произвольно взя­тых на плоскости точек определяют единственную кривую второго порядка (1 — окружность, 2 — эл­липс, 3 — параболу, 4 — гиперболу, все случаи вы­рожденной кривой мы рассматривать не будем). За­метим, что наличие именно пяти точек позволяет нам использовать данную теорему (рис. 6).

Для иллюстрации этой теоремы вы можете взять любые пять точек на плоскости и, немного подумав, достаточно легко сможете определить, какая именно из указанных кривых проходит через взятые вами точки (чтобы не попасть в случае вырожденной кри­вой второго порядка, не ставьте три и более точек на одну прямую, так как в подобном случае линия должна будет выродиться (преобразоваться) в точку, пару пересекающихся, параллельных или совпадаю­щих прямых (одна прямая).

Поделиться:
Популярные книги

Повелитель механического легиона. Том VI

Лисицин Евгений
6. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VI

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Возвращение Безумного Бога 3

Тесленок Кирилл Геннадьевич
3. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 3

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Курсант: Назад в СССР 13

Дамиров Рафаэль
13. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 13