Чтение онлайн

на главную

Жанры

Шрифт:

А вот квантовые компьютеры проявляют невероятные способности. Вместо нулей и единиц они оперируют особыми квантовыми состояниями, характерными для микромира, — квантовыми битами, или, сокращенно, кубитами (q-битами). Кубит, в отличие от классического бита, может не только равняться нулю или единице, но и принимать промежуточные значения, точнее, весь спектр значений от нуля до единицы. Физики говорят о «суперпозиции», о наложении состояний.

«Наличие континуума состояний между нулем и единицей, — пишет австралийский физик Майкл Нильсен на страницах журнала «Scientific American», — причина многих необычных свойств квантовой информации. В одном кубите можно закодировать бесконечное количество классической информации».

Едва мы начнем решать на квантовом компьютере какую-либо задачу, как его кубиты воплотят сразу все возможные решения. Два кубита представляют сразу четыре числа — 00, 01, 10, 11, три кубита — восемь чисел, n кубитов — это 2 в степени n чисел. В поисках решения компьютер будет перебирать все имеющиеся варианты одновременно (!). Там, где обычный компьютер последовательно вычисляет функцию f от одного значения x, другого значения x и так далее, квантовый компьютер одновременно определит все показатели f при любых значениях x. Он найдет нужное решение, уложившись в считанное число операций, и справится с не решаемой — в нашей Вселенной — задачей менее, чем за час. Задача поиска тех же простых сомножителей раскладывается на целый ряд задач, которые будут решаться не последовательно, а параллельно друг другу, то есть одновременно. Как заявил еще один сотрудник лаборатории Белла, Лав Грувер, подобный компьютер будет незаменим при решении нечетко сформулированных задач. Привычные нам машины теряются при решении таких задач. Недаром о подобном компьютере мечтал еще в начале 1980-х годов Ричард Фейнман — эта машина идеально моделировала бы поведение квантовых систем.

Следующий пример, затрагивающий ваши личные, пусть и мнимые, интересы, наглядно обрисует разницу между двумя типами компьютеров. Представьте себе, вам сообщили, что в квартире номер 80 лежит банковский чек в один миллион евро, выписанный на ваше имя. Единственное, чего вы не знаете, так это названия города, улицы, страны, где вас давно дожидается ваше счастье. Правда, в вашем распоряжении есть чудесная база данных: в ней упомянуто все, что хранится во всех жилищах нашей планеты. Вот только опять незадача: в вашем распоряжении есть лишь обычный кремниевый компьютер. Он последовательно город за городом, улица за улицей, дом за домом просматривает все, что хранится в его памяти. Начинается перебор данных: Санкт-Петербург, Уфа, Москва, улица Бирюлевская, Рузская, Широкая, дом 10, 15, 20… А ваше богатство покоится где-нибудь в далеком Белу-Оризонти… И через сколько лет педантичная машина отыщет его? Нужно ли оно будет вам тогда? Квантовый компьютер — не в пример этому тихоходу, — моментально обозрев все варианты, даст вам ответ через считанные секунды.

Известие об алгоритме Шора было сродни разорвавшейся бомбе. «Внезапно на всех проводимых нами конференциях стали появляться люди, которых мы никогда не видели», — вспоминает немецкий физик Герберт Вальтер. Многие из этих посторонних, неожиданно возомнивших себя знатоками неизведанной области физики, открыто указывали свое место работы: «National Security Agency» (NSA). В Национальном агентстве безопасности собрались американские «взломщики кодов», использующие в своих целях самые мощные компьютеры. Вот так спецслужбы США быстро взяли под свое крыло все работы в этой области, поддерживая ученых деньгами и зорко следя за их новейшими достижениями. Естественно, подобный компьютер, моментально выхватывающий из огромной базы данных нужный результат, пригодится и в науке.

Счетные доски квантовых дотов

Однако сказанное, по большей части, представляет собой лишь мечты. Идея квантового компьютера блестяща, но реализовать ее весьма трудно, поскольку квантовые эффекты, теоретически облегчающие работу подобной машины, в то же время делают неимоверно сложным ее практическое воплощение. Пытаясь узнать результат вычислений, мы невольно вмешиваемся в процессы, происходящие на субатомарном уровне, и тогда результат меняется. Квантовый компьютер настолько чувствителен, что его работу нельзя контролировать. Он должен быть полностью изолирован от всего. Любое взаимодействие с окружающей средой может разрушить квантовое состояние, и тогда накопленная информация будет утрачена. Удастся ли нам приноровиться к подобным странностям квантового мира, обуздать их — покажет будущее.

Так, первый алгоритм решения задач с нечетко поставленными условиями был опубликован еще в 1996 году. Но для его применения нужны мощные машины. А их-то у нас нет!

Еще никто не знает, сколько атомов надо соединить, чтобы квантовый компьютер впрямь заработал. Все атомы нужно идеально изолировать от внешнего мира. Даже одна-единственная молекула газа моментально разрушит это хрупкое состояние. А ведь абсолютного вакуума не существует!

Поэтому ученые радуются, когда подобное «телепатическое» состояние удается удержать на миллионную долю секунды. Соответственно и возможности современных квантовых компьютеров пока невероятно малы. В лучшем случае они работают как квантовая… счетная доска.

Так, в декабре 2001 года Айзек Чуанг, сотрудник компании IBM, создал 7-кубитную машину, использовав в качестве вычислительных элементов пару капель раствора соединения железа (C11H5F5O2Fe). Отдельным кубитам соответствовали спины атомов фтора и углерода. Данная машина сумела определить, что делителями числа 15 являются числа 3 и 5 (пятнадцать — это минимальное число, для которого алгоритм Шора дает разумное решение). Это было тогда… самое сложное вычисление за всю историю квантовых компьютеров.

На первый взгляд, эксперимент не слишком эффектен, и все же он стал важным шагом на пути к созданию квантового компьютера. Возможности этого компьютера XXI века наглядно покажет следующий пример.

В одном из недавних экспериментов, чтобы разложить 158-значное число на простые множители, потребовалось несколько недель времени и сеть из 144 соединенных вместе компьютеров. А вот квантовый компьютер разложил бы подобное число на сомножители в течение считанных минут.

Эффективность квантовых компьютеров нарастает по экспоненте в зависимости от количества кубитов. Так, по своей мощности 50-кубитная машина эквивалентна кремниевому компьютеру с объемом памяти в 128 тысяч гигабайт; 20- или 30-кубитные машины соответствуют стандартному персональному компьютеру. Однако даже оптимисты не обещают, что подобные машины появятся в ближайшие два десятилетия.

Пока можно говорить лишь о том, как они будут схематично выглядеть. Так, в 2002 году в статье, опубликованной в «Nature», американский исследователь Дэвид Уайнлэнд из Национального института стандартов и технологий предложил модель большого квантового компьютера, состоящего из множества соединенных друг с другом ионных ловушек, в которых «заперты» ионы — носители информации. Его архитектура напоминает архитектуру традиционного компьютера. Оба располагают блоком памяти, где хранятся различные данные, и процессором, выполняющим математические операции.

В схеме Уайнлэнда все ионы поначалу находятся в блоке памяти, но при выполнении операций отдельные ионы вследствие мгновенного изменения магнитного поля попадают в вычислительное устройство, где их квантовое состояние меняется.

Чтобы в работе квантового компьютера не было сбоев, Уайнлэнд предложил использовать в качестве единичного носителя информации не отдельный ион, а ионную пару, поскольку ее квантовое состояние более устойчиво к действию внешних электромагнитных полей.

А если пойти другим путем?

Популярные книги

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Я подарю тебе ребёнка

Малиновская Маша
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Я подарю тебе ребёнка

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Аномальный наследник. Пенталогия

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
6.70
рейтинг книги
Аномальный наследник. Пенталогия

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Штурм Земли

Семенов Павел
8. Пробуждение Системы
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Штурм Земли