Тайны открытий XX века
Шрифт:
Ответить на все эти вопросы удастся лишь в далеком будущем. Пока, опираясь на знания, накопленные квантовой физикой, мы можем лишь предположить, как будет выглядеть исходный, «развоплощенный» человек. Помните, что в квантовом мире мяч может быть одновременно и белым, и черным? Он примет какую-то определенную окраску лишь в тот момент, когда мы попытаемся взглянуть на него. «Если бы мы телепортировали человека, то на том самом месте, где только что стояло живое существо, — говорит Антон Цайлингер, — появился бы некий условный человек, которому одновременно были бы присущи все обличья и все характеры людей, живших до него и живущих теперь на Земле». Он воплощал бы одновременно все возможные образы человека, был бы Гитлером и Ганди, Булгариным и Пушкиным, Адамом и Евой
Наконец, проблема еще и в том, что даже ученые по-разному пока истолковывают некоторые положения квантовой физики. Вернемся к тому же примеру с мячом, который может быть одновременно черным и белым и окончательно принимает цвет, лишь когда мы глядим на него, то есть «измеряем его состояние».
Итак, на наших глазах мяч принял одно из возможных состояний. Допустим, он стал черным. Что это может означать?
Что теперь он всегда будет черного цвета? Что он обрел этот цвет лишь на миг и, как только мы отвернемся от него, он вновь вернется в исходное, «неопределенное» состояние. А может быть, всякий раз, когда возникает подобный выбор, наша Вселенная делится на несколько параллельных миров (по числу возможных состояний)? В одном из них наш «мячик раздора» окрашен в черный цвет, в другом — в белый цвет. В таком случае каждое мгновение рождается бесконечное множество Вселенных, в которых происходят все те события, что не успели разыграться на наших глазах.
Английский фантаст Олаф Степлдон еще в тридцатые годы так описывал эту возможность: «В некоем непостижимо сложном Космосе всякий раз, когда какое-либо существо встречается с различными альтернативами, оно выбирает не одну, а все… И поскольку в этом мире множество существ и каждое из них постоянно сталкивается со многими альтернативами, то комбинации этих процессов неисчислимы» (пер. Е.М. Лысенко). В пятидесятые годы «размножение Вселенных» анализировал уже физик Хью Эверетт.
Во всех упомянутых нами гипотезах особая роль неизменно отводится человеку, ибо именно он «глядит» на окружающий его мир, то есть «измеряет его состояние». Весь мир в таком случае, повторим полюбившуюся Виктору Пелевину мысль, — это своего рода Театр, сотворенный Господом Богом для одного-единственного зрителя, которым являетесь вы. «Мы до сих пор не может постичь, какое место занимает человек в нашей Вселенной, — сказал в одном из интервью Антон Цайлингер. — Возможно, ему отведена куда более важная роль, нежели могли предполагать создатели классической физики».
Вместо постскриптума. Годы телепортаций
В 1998 году Джефф Кимбл и его коллеги из Калифорнийского технологического института сумели телепортировать сразу несколько фотонов.
В том же году исследователи из Лос-Аламосской лаборатории телепортировали направление вращения атомного ядра, заставив другое ядро, находившееся внутри той же самой молекулы, вращаться в этом же направлении.
В 2002 году австралийские исследователи телепортировали лазерный луч, содержавший миллиард фотонов. Луч погас, чтобы тут же, в метре отсюда, вновь материализоваться.
Связанные пары фотонов очень чувствительны и распадаются, когда взаимодействуют с молекулами воздуха.
Если в первых экспериментах телепортировали частицы на несколько метров, то теперь в Лос-Аламосской лаборатории создана линия связи длиной 48 километров. Впрочем, телепортировать фотоны все-таки гораздо легче, чем другие объекты, поскольку они не обладают ни массой, ни внутренней структурой, и их движением легко манипулировать с помощью линз, зеркал и устройств для расщепления пучка частиц. Зато квантовые состояния атомов гораздо долговечнее, чем фотонов. Поэтому атомы можно использовать для длительного хранения квантовой информации.
В 2004 году сразу двум группам ученых удалось телепортировать атомы — сложные системы, объединяющие большое число электронов и массивное ядро. Предварительно атомы были охлаждены с помощью лазеров почти до абсолютного нуля. Райнер Блат из Инсбрукского университета проводил опыты с ионами кальция; его американский коллега, Мюррей Баррет из Национального института стандартов и технологий, — с ионами бериллия. Схема экспериментов в обоих случаях напоминала описанный выше опыт Цайлингера. Были проведены по несколько сотен опытов по телепортации ионов, причем в 75 процентах случаев ученым удавалось добиться успеха.
В июне того же года Райнер Блат опубликовал на страницах журнала «Science» схему миниатюрного квантового компьютера, состоящего из трех связанных ионов кальция, находящихся в магнитной ловушке.
В ближайшее время можно ожидать опытов по телепортации молекул и даже более крупных объектов, но вот телепортация макроскопических тел, по-видимому, во веки веков остается уделом писателей-фантастов.
«В любом случае можно надеяться, что технология квантовой телепортации позволит создать принципиально новые, невиданные по быстроте и объему памяти вычислительные устройства — квантовые компьютеры», — отмечал на страницах журнала «Знание — сила» B.C. Барашенков. Метод телепортации квантовых состояний ионов можно использовать в схеме квантового компьютера для передачи различных данных, в том числе от одного квантового компьютера другому.
Данный метод можно со временем использовать также в квантовой криптографии для передачи секретных сообщений на расстояние в сотни километров. Передаваемая информация исчезнет в одной точке пространства, чтобы моментально появиться у адресата.
1.14. ПОСЛЕДНИЕ ТАЙНЫ КЛАССИЧЕСКОЙ ФИЗИКИ
Ученые по-прежнему не могут до конца объяснить многие свойства твердых тел, например, магнетизм или сверхпроводимость. Внутри твердых тел наблюдаются настолько сложные и разнообразные процессы взаимодействия атомов, что описать их с помощью формул или составить модель их поведения пока не удается. Очевидно, какого-то прогресса поможет достичь нанотехнология — одно из важнейших направлений науки XXI века.
Решение было таким органичным
Еще никогда прежде путь от открытия в области физики до получения Нобелевской премии не был таким коротким. Когда 14 октября 1987 года Нобелевский комитет обнародовал свое решение наградить физиков Георга Беднорца и Карла Мюллера, прошло лишь около года с тех пор, как они, сотрудники научно-исследовательской лаборатории IBM в Рюшликоне (Швейцария), открыли феномен высокотемпературной сверхпроводимости.