TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
Шрифт:
Рис. 2.2. Пересылка файла через приложение для настольного компьютера
2.4.10 WWW
Можно копировать файлы и с серверов WWW, не задумываясь об их реальном размещении. На рис. 2.3 показан экран браузера Netscape Navigator. Новые документы извлекаются щелчком мыши на одной из выделенных фраз. Далее их можно сохранить на локальном диске через меню File/Save.
Рис. 2.3.
2.4.11 Новости
На рис. 2.4 представлен экран Chameleon для работы с новостями. На нем перечислены группы новостей по темам научных исследований.
Рис. 2.4. Группы новостей по научной тематике
2.4.12 Диалог для доступа к файлу
Рассмотрим последний диалог с пользователем. В этом примере используется компьютер с дисковой операционной системой (Disk Operating System — DOS), подключенный к сети TCP/IP. Мы переключимся на устройство d: локального хоста и просмотрим содержимое корневого каталога:
К этому примеру даже не требуется особых пояснений: файлы, которые отмечены как находящиеся на локальном диске d:, реально читаются с удаленного сервера NFS.
Глава 3
Архитектура TCP/IP
3.1 Введение
Протоколы TCP/IP разработаны для сетевого окружения, которое было мало распространено в 70-х гг., но сегодня стало нормой. Эти протоколы позволяют соединять оборудование различных производителей и способны работать через различные типы носителей или сред и связи данных. Они позволили объединить сети в единую сеть интернет, все пользователи которой имеют доступ к набору базовых служб.
Более того, спонсировавшие разработку TCP/IP научные, военные и правительственные организации хотели получить возможность подключения к интернету новых сетей без изменения служб уже существующих в интернете сетей.
Все эти требования нашли отражение в архитектуре TCP/IP. Требования независимости от носителей и расширения за счет подключения новых сетей привели к решению о пересылке данных в интернет с разделением их на части и маршрутизацией каждой из этих частей как независимого элемента.
Такие возможности гарантируют надежную пересылку данных от хоста источника к хосту назначения. Вследствие этого разработчики маршрутизаторов направили свои усилия на повышение производительности и внедрение новых коммуникационных технологий.
Все это привело к прекрасной масштабируемости протоколов TCP/IP и возможности их применения на различных системах — от больших ЭВМ (mainframe) до настольных компьютеров. На практике полезный набор функциональных свойств сетевого управления маршрутизацией реализуется неинтеллектуальными устройствами, подобными мостам, мультиплексорам или коммутаторам.
3.2 Деление на уровни
Для достижения надежности обмена данными между компьютерами необходимо обеспечить выполнение нескольких операций:
■ Пакетирование данных
■ Определение путей (маршрутов) пересылки данных
■ Пересылку данных по физическому носителю
■ Регулировку скорости пересылки данных в соответствии с доступной полосой пропускания и возможностью приемника получать посланные ему данные
■ Сборку полученных данных, чтобы в формируемой последовательности не было потерянных частей
■ Проверку поступающих данных на наличие дублированных фрагментов
■ Информирование отправителя о том, сколько данных было передано успешно
■ Пересылку данных в нужное приложение
■ Обработку ошибок и непредвиденных событий
В результате программное обеспечение для коммуникации получается достаточно сложным. Следование модели с разделением на уровни позволяет упростить объединение сходных функций в группы и реализовать разработку коммуникационного программного обеспечения по модульному принципу.
Специфика структуры протоколов TCP/IP определяется требованиями коммуникаций в научных и военных организациях. IP позволяет объединить различные типы сетей в интернет, a TCP несет ответственность за надежную пересылку данных.
Коммуникационная модель обмена данными OSI строго соответствует структуре TCP/IP. Уровни и терминология модели OSI стали стандартной частью коммуникационной структуры обмена данными.
На рис. 3.1 показаны уровни OSI и TCP/IP. Начнем их анализ с самого нижнего уровня (в TCP/IP формально не определены уровни сеанса и представления).
Рис. 3.1. Уровни TCP/IP и OSI
3.2.1 Физический уровень
Физический уровень (physical layer) имеет дело с физическими носителями, разъемами и сигналами для представления логических нулей и единиц. Например, адаптеры сетевого интерфейса Ethernet и Token-Ring и соединяющие их кабели реализуют функции физического уровня.
3.2.2 Уровень связи данных