Темная сторона материи. Дирак. Антивещество
Шрифт:
ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ
Альберт Эйнштейн (1879-1955) полагал, что противоречия между электромагнетизмом и механикой вытекают из законов Ньютона. Он отказался от идеи эфира и возможного существования абсолютной системы отсчета. Эйнштейн разработал теорию относительности, исходя из двух основополагающих постулатов.
1. Принцип относительности. Все законы физики одинаковы для всех инерциальных систем отсчета.
2. Принцип постоянности скорости света. Скорость света в вакууме всегда одинакова, независимо от рассматриваемой инерциальной системы отсчета.
Первый постулат представляет собой обобщенный принцип Галилея — Ньютона и демонстрирует невозможность различать инерциальные системы. Второй постулат гораздо более странный, он очевидным образом
Рассмотрим понятие одновременности в свете специальной теории относительности. В механике Ньютона время абсолютно и, следовательно, одинаково для всех наблюдателей. В схеме Эйнштейна, напротив, одновременные события в одной системе отсчета обычно не одновременны в другой системе отсчета; другими словами, одновременность событий зависит от системы отсчета. Это означает, что время протекает (и измеряется) по-разному в зависимости от системы.
Из постулатов Эйнштейна следует, что измеряемое время может замедляться в движущихся инерциальных системах; иначе говоря, оно течет быстрее, когда мы измеряем его в той же системе отсчета, в которой и находимся (в «собственной» системе). Наконец, и длина предмета зависит от системы, в которой он измеряется, поскольку определить длину означает определить одновременно края этого предмета. Эйнштейн осуществил множество «мысленных экспериментов», чтобы данный аспект стал очевидным. И если релятивистские эффекты — сокращение длины и замедление времени — незаметны в повседневном мире, для которого механика Ньютона является достаточно точной, то они играют ключевую роль в объяснении субатомных процессов.
Еще один важный принцип, следовавший из теории относительности и оказавший серьезное влияние на квантовую теорию, — принцип эквивалентности массы и энергии. В релятивистской теории масса тела зависит от системы отсчета, она увеличивается вместе со скоростью и тяготеет к бесконечности, когда скорость тела приближается к скорости света. Соотношение между массой и общей энергией тела выражается знаменитым уравнением Эйнштейна: Е = mc2. Оно описывает эквивалентность массы и энергии и означает, что излучение или взаимодействие, то есть энергия, могут переходить в массу (в частицы), и наоборот, что частицы (масса) могут разрушаться, производя энергию. Это уравнение сыграло огромную роль
Дирак в учебной аудитории.
Поль Дирак (четвертый слева) с коллегами во время VII Сольвеевского конгресса, который был организован в 1933 году и посвящен структуре и свойствам атомного ядра. в открытии взаимодействия излучения с веществом в рамках квантовой теории. Дирак стал первым ученым, сумевшим логично соединить релятивистскую теорию с квантовой моделью. Постулирование неинерциальных систем отсчетов привело Эйнштейна к разработке общей теории относительности, он опубликовал ее в 1916 году.
РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ В КВАНТОВОМ МИРЕ
Время, в которое происходит какое-либо событие, так же как и длина предмета, зависят от инерциальной системы отсчета, в которой они измеряются. В свете теории относительности эти эффекты выражаются следующими уравнениями:
t = t0; L = L0/
где t0 и L0 означают измеряемые время и длину в движущейся системе отсчета, а t и L показатели, измеряемые в неподвижной системе. Член уравнений у, называемый «фактором Лоренца», выражается так:
= 1/((1-(v/c)2)
В
ПЕРВЫЕ ШАГИ КВАНТОВОЙ ТЕОРИИ
Второй революцией в области физики, имевшей еще более серьезные последствия, нежели теория относительности, стало рождение квантового мира. Квантовая теория позволила объяснить поведение субатомного мира. Применение законов механики и электромагнетизма к таким системам было невозможно, все расчеты полностью опровергались результатами опытов.
ТРИ ПОРАЗИТЕЛЬНЫХ ОТКРЫТИЯ
В конце XIX века произошли три поразительных и неожиданных открытия; пришлось ждать многие годы, прежде чем удалось понять и объяснить их благодаря рождению и развитию квантовой теории. Эти открытия ознаменовали начало новой эры в физике, называемой с тех пор «современной физикой». Первым из них стало открытие в 1895 году икс-излучения немецким ученым Вильгельмом Рентгеном (1845-1923), которое было способно проходить сквозь предметы и позволяло получать изображение костей. Открытие вызвало большой энтузиазм, и Х-лучи стали использовать, не поняв их природы. В следующем 1896 году французский физик Анри Беккерель (1852-1908) случайно открыл новый тип излучения — радиоактивное излучение, понимание которого требовало глубоких знаний о внутренней структуре вещества. Наконец, в 1898 году британец Джозеф Джон Томсон (1856-1940) открыл электроны, носители электрического заряда и главные составляющие вещества. Три данных открытия, вместе с многолетними исследованиями Макса Планка (1858-1947) излучения черного тела, стали почвой, на которой взросла несколькими годами позже новая революционная квантовая теория.
Первая рентгенограмма, сделанная Рентгеном. Снимок руки его жены.
Годом рождения квантовой теории принято считать 1900 год: именно тогда Макс Планк опубликовал статью об излучении абсолютно черного тела. Классическая теория излучения не позволяла объяснить результаты экспериментов при высоких частотах. Планк смог дать приемлемое объяснение результатам опытов с помощью следующей гипотезы:
«Излучение испускается или поглощается целыми кратными числами некоторого ограниченного количества энергии — квантами».