Чтение онлайн

на главную

Жанры

Шрифт:

Выполненный анализ показывает, что в бане, как и в земной атмосфере, метеорологическая обстановка будет определяться тем, имеются или нет крупномасштабные перемещения воздуха. Если сильных подвижек воздуха нет, то погода будет формироваться исключительно местными явлениями нагрева, испарения и конденсации. Но если потоки воздуха возникают, то они могут принести с собой те метеоусловия, которые возникли, может быть, очень далеко от этой местности. Так, дожди в Финляндии, скорее всего, обуславливаются процессами испарения где-нибудь в Атлантике, а не в самой Финляндии, и приносятся перемещающимися циклонами. Применительно к человеку в бане это означает, что бани с неподвижным воздухом являются малоконтрастным и влажными, поскольку испарение пота (влаги) с кожи приводит к постепенному накапливанию влаги в воздухе вокруг человека точно так же, как в непроветренном помещении. Появление воздушных потоков делает баню контрастной, малопредсказуемой, способной давать и мощные волны жгучего пара, и быстро осушаться. То есть баня с подвижным воздухом может быть и паровой (преимущественно

кратковременно), и сухой (долговременно) в зависимости от пространственного распределения метеоусловий вдоль траектории воздушных потоков (Б.А. Семенченко, Физическая метеорология, м.: Аспект-Пресс, 2002 г.).

Неподвижность воздуха в бане означает, что в ней могут находиться неперемешивающиеся между собой индивидуальные застойные зоны с разными метеопараметрами. Например, если в хаммаме обогреваемый пол мокрый и имеет температуру 55 °C, то около него формируется застойная зона воздуха с температурой 55 °C и абсолютной влажностью 0,1 кг/м3, соответствующей плотности насыщенного пара при 55 °C (то есть отвечающей относительной влажности воздуха 100 % для 55 °C). В то же время в метре от пола, где на каменных лежаках (может быть, и мокрых) с температурой 40 °C лежат люди (может быть, и потные) с температурой кожи 40 °C, процессы испарения и конденсации формируют иную застойную зону с температурой 40 °C и абсолютной влажностью 0,05 кг/м3 (с относительной влажностью воздуха 100 % для 40 °C). А наверху у свода потолка с температурой, например 30 °C, формируется своя застойная зона с абсолютной влажностью воздуха 0,03 кг/м3 (с относительной влажностью воздуха 100 % для 30 °C).

Таким образом неподвижность воздуха создаёт условия его 100 %-ой относительной влажности во всём объёме такого модельного хаммама. В отличие от изотермического модельного сосуда (макета турецкой бани) из раздела 4.2, здесь 100 %-ная относительная влажность воздуха может быть достигнута и в неизотермическом сосуде с разными температурами в разных застойных зонах (см. понятие сырого воздуха далее в разделе 7.6). Ясно, что гигрометр в такой неподвижной бане мало что может сказать парильщику. А вот распределение точек росы воздуха в объёме бани сразу однозначно определит всю метеообстановку. Так, даже в отсутствии потоков воздуха возникает диффузионный поток молекул воды в неподвижном воздухе из зон с высокой точкой росы (с высокой абсолютной влажностью воздуха) в зоны с низкой точкой росы (низкой абсолютной влажностью воздуха). Но поскольку воздух во всех зонах до предела насыщен водой (всюду имеет 100 % относительную влажность), то это приводит к появлению процессов конденсации в зонах с низкой точкой росы в виде росы (в том числе и на телах людей) и в виде тумана (дымки). Если же возникают потоки воздуха, то они резко усиливают проникновение высоковлажных объёмов воздуха в холодные зоны с возникновением «клубов пара». Аналогичная картина наблюдается и в земной атмосфере при возникновении облаков, а также ночных туманов в холодном воздухе над тёплыми водоёмами. Обратим внимание, что воздух с относительной влажностью 100 % (который до предела насыщен парами воды) тем не менее способен «испарять» (в смысле принимать) воду, но только нагретую до температур более высоких, чем температура воздуха, и при этом обязательно образуется туман. Это объясняется тем, что около поверхности воды имеется тонкий пограничный слой воздуха, температура и абсолютная влажность которого выше, чем у окружающего воздуха. Пары воды из него диффундируют в окружающий воздух и там конденсируются.

Неподвижность воздуха в бане всегда создаёт у поверхности воды (будь то у мокрой полки или у потной кожи) застойные зоны с 100 % относительной влажностью. Потоки же воздуха разрушат или перемешают застойные зоны. Поэтому появление движения воздуха может снизить относительную влажность, а может и «повысить» её, подразумевая, что превышение относительной влажности воздуха сверх 100 % означает физически образование росы или тумана.

Анализ возможных последствий появления потоков воздуха в бане наиболее нагляден в форме модельных умозрительных перемещений выделенного объёма воздуха вдоль траектории возможных воздушных потоков. Имея в виду, что точка росы воздуха в изолированном выделенном объёме постоянна (также как и абсолютная влажность воздуха) вне зависимости от факта охлаждения или нагрева воздуха в выделенном объёме, легко предугадать, будет ли воздух в выделенном объёме увлажняться или осушаться при нарушении изоляции, то есть при контакте с элементами бани с той или иной температурой. Если точка росы воздуха ниже температуры элемента бани (пола, полка, потолка, тела человека и т. п.), то происходит испарение воды (если она есть) с поверхности элемента и увлажнение воздуха. И наоборот, если точка росы воздуха выше температуры элемента, то происходит конденсация водяных паров из воздуха и осушение воздуха.

Анализ будет сложнее, если оперировать понятием относительной влажности воздуха, которая изменяется с изменением температуры воздуха в выделенном объёме. В этом случае будут полезны конденсационные кривые, соответствующие постоянным точкам росы (постоянным абсолютным влажностям) воздуха (рис. 37). По известным температуре и относительной влажности воздуха необходимо определить местоположение метеоточки А, и если она располагается ниже конденсационной кривой, то будет наблюдаться испарение воды с поверхности элемента, а если выше, конденсация паров на поверхность элемента. Так, метеоточка А, изображённая на рис. 37,

соответствует испарению воды с элементов с температурами 50 °C (и выше) и конденсации водяных паров на элементах с температурой 40 °C (и ниже). Охлаждение и нагрев воздуха в выделенном объёме соответствуют перемещению точки А по кривой А1А2, а потому не изменяют результатов выполненного выше анализа. Указанные кривые могут быть использованы при анализе банных процессов по результатам измерения температуры и относительной влажности воздуха гигрометром.

Рис. 37. Конденсационные кривые — теоретические зависимости относительной влажности воздуха (по гигрометру) от температуры воздуха Тс (по сухому термометру) при разных фиксированных точках росы воздуха Тр (указанных числами у кривых). Если условная метеоточка А расположена ниже конденсационной кривой для точки росы, равной температуре элемента, то происходит испарение влаги с поверхности элемента (потолка, стены, пола, полка, человека и т. п.). Если же точка А расположена выше конденсационной кривой для точки росы, равной температуре элемента, то происходит конденсация воды из воздуха на поверхность элемента. Кривая А1А2 представляет собой конденсационную кривую для такой температуры условного элемента, при которой не происходили бы ни конденсация, ни испарение с элемента в воздухе, описываемом метеоточкой А. При охлаждении или нагреве воздуха с исходными метеоусловиями, отвечающими точке А, точка А перемещается вдоль кривой А1А2 (при условии отсутствия процессов испарения и конденсации на элементы). Конденсационная кривая для температуры 40 °C является хомотермальной кривой, см. рис. 29.

Отметим, что подобный анализ абсолютно аналогичен рассуждениям, проведённым в разделе 5.3 при введении понятия хомотермальной кривой, которая, кстати, эквивалентна конденсационной кривой для температуры 40 °C.

Основным выводом настоящего раздела является необходимость учёта не только охлаждения, но и осушения воздуха на холодных элементах бани. Это в общем-то тривиальное заключение, тем не менее очень часто недооценивается при проектировании и строительстве бань. Во-первых, по той причине, что ошибочно полагают основным параметром бани температуру, а не влажность воздуха. Действительно, чем горячее воздух, тем до более высокой температуры нагревается полок бани или, скажем, медальон на теле. Но если турецкую, например, баню залповым образом проветрить, то вернуть прежние тепловые для человека метеоусловия без повторного увлажнения воздуха не удаётся, хотя температура воздуха тотчас поднимется до прежних значений за счёт массивного тёплого пола и стен. При низких температурах бани (ниже 60–80 °C) без увлажнения воздуха жары в бане не добиться. Во-вторых, привыкнув к факту беспрерывного циркуляционного нагрева воздуха от печи (или от иного горячего элемента) и его охлаждения на потолке, стенах и полах, обеспечивающего прогрев помещения бани, порой забывают, что осушение воздуха на холодных элементах вовсе не компенсируется простым нагревом от печи — необходимо столь же постоянно и увлажнять воздух (например, поддачами или горячим влажным потолком в русской бане).

Если охлаждение воздуха определяется соотношением температур воздуха и холодного элемента, то осушение воздуха — соотношением точки росы воздуха и температуры холодного элемента. Скорость же осушения определяется разностью абсолютной влажности воздуха и плотностью насыщенного пара при температуре холодного элемента. А так как плотность насыщенного пара изменяется с температурой очень сильно (экспоненциально), то скорость осушки воздуха на холодном элементе растёт быстрее со снижением температуры холодного элемента, чем скорость охлаждения воздуха. Поэтому наличие сверххолодных элементов (например, ледяных полов) оказывает более сильное влияние на влажность нежели на температуру воздуха в бане. Это может привести к тому, что иная баня неплохо «держит температуру» (тем более за счёт постоянного подогрева воздуха стенами), но «не держит жар» в том смысле, что «не держит пар».

Бани, которые «не держат пар», называются сухими саунами. В сухих саунах обязательно имеется холодный элемент, осушающий воздух (либо имеется приточная вентиляция, подающая сухой воздух, см. раздел 8). Циркуляция воздуха в сауне повышает эффективность осушки воздуха на холодном элементе, поскольку подает на холодную конденсирующую поверхность большее количество влажного воздуха. В принятой конструкции финских сухих саун циркуляция воздуха достигается за счёт мощного восходящего воздушного потока у горячих стенок мощной металлической печи. Поэтому в России сухими саунами (или просто саунами) условно именуют в быту бани с мощной металлической печью и холодным полом, которые «не держат пар» в том смысле, что увлажнённый любым образом воздух тотчас осушается.

К баням, которые «держат пар», относятся хаммамамы и русские белые бани, поскольку они не имеют холодных элементов или, во всяком случае, постоянных мощных циркуляционных потоков. В русских парных белых банях с закрытой каменкой предусмотрена возможность быстрого осушения воздуха в бане с помощью веника, направляющего горячий влажный воздух на холодный пол («посадка пара»), а также быстрого увлажнения воздуха в бане с помощью поддач.

4.6. Процессы лучистого нагрева

Поделиться:
Популярные книги

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Идущий в тени 8

Амврелий Марк
8. Идущий в тени
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Идущий в тени 8

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Назад в СССР: 1985 Книга 3

Гаусс Максим
3. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Назад в СССР: 1985 Книга 3

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Огненный князь 3

Машуков Тимур
3. Багряный восход
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Огненный князь 3

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ