Чтение онлайн

на главную

Жанры

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков
Шрифт:

2.7. Обучение искусственных нейронных сетей

Для работы с нейронными сетями требуется их обучение под конкретную задачу. В частности, для решения задачи распознавания объектов на изображении требуется обучение сети по специально подготовленному набору данных, который содержит изображения всех классов распознаваемых объектов, сгруппированных в соответствующие разделы. Такой тип данных носит название датасет (набор данных, Data set).

Существует большое количество уже собранных и подготовленных датасетов для решения различных задач с использованием нейронных сетей (не только для задач распознавания объектов). Более того, существуют уже заранее обученные под решение конкретной задачи нейронные сети, которые можно взять

в готовом виде. Но перечень таких сетей и датасетов не очень большой, и в общем случае перед разработчиком может стоять задача выбора конфигурации нейронной сети под конкретную задачу и создание соответствующей базы данных (датасета) для ее обучения.

Формирование датасета является наиболее трудоемкой частью процесса разработки, поэтому в первую очередь нужно проверить возможное наличие похожего датасета на доступных ресурсах. На этом ресурсе имеется более 50000 свободно распространяемых датасетов и более 400000 примеров реализаций нейронных сетей. В ряде случаев имеющиеся датасеты можно объединять, модифицировать и дополнять.

Процесс обучения нейронных сетей представляет собой сложный процесс обработки данных, который включает в себя последовательное предъявление данных на вход нейронной сети и сравнение выходных данных с их истинным значением, после чего вносится коррекция весовых коэффициентов нейронов в сторону уменьшения ошибки выходных данных. Этот процесс производится многократно с использованием данных из датасета. В процессе обучения используется часть датасета, которая носит название тренировочный набор. При этом данные из датасета могут предъявляться последовательно несколько раз.

К общим рекомендациям состава датасета относятся увеличение количества изображений с отмеченными целевыми объектами, а также включение в датасет изображений с возможными вариантами фона (частей изображения, не относящихся к целевым объектам). Большие по размерам и общему объему изображения увеличивают время обучения и работы классификатора. Для каждой сетевой модели рекомендуется подавать на вход изображения различных размеров. В экспериментах было установлено, что обучение сети на изображениях, повернутых относительно исходных на 90°, производится быстрее, чем на изображениях исходной видеопоследовательности.

Один цикл обучения с использованием всего датасета носит название эпоха. Как правило, для качественного обучения сети требуется много эпох. Процесс обучения нейронных сетей, имеющих много скрытых слоев, часто носит название глубокого обучения.

Процесс обучения с учителем представляет собой предъявление сети выборки обучающих примеров. Каждый образец подается на входы сети, затем проходит обработку внутри структуры НС, вычисляется выходной сигнал сети, который сравнивается с соответствующим значением целевого вектора, представляющего собой требуемый выход сети. Затем по определенному правилу вычисляется ошибка, и происходит изменение весовых коэффициентов связей внутри сети в зависимости от выбранного алгоритма. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня (рисунок 2.7).

Рисунок 2.7 – Схема обучения нейронной сети

При обучении без учителя обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью. Для обучения нейронных сетей без учителя применяются сигнальные метод обучения Хебба и Ойа.

Математически процесс обучения можно описать следующим образом. В процессе функционирования нейронная сеть формирует выходной сигнал Y, реализуя некоторую функцию Y=G(X). Если архитектура сети задана, то вид функции G определяется значениями синаптических весов и смещенной сети.

Пусть решением некоторой задачи является функция Y=F(X), заданная параметрами входных-выходных данных (X1, Y1), (X2, Y2), …, (XN, YN), для которых Yk=F(Xk), где k=1, 2, …, N.

Обучение состоит в поиске (синтезе) функции G, близкой к F в смысле некоторой функции ошибки E.

Если выбрано множество обучающих примеров – пар (XN, YN), где k=1, 2, …, N) и способ вычисления функции ошибки E, то обучение нейронной сети превращается в задачу многомерной оптимизации, имеющую очень большую размерность, при этом, поскольку функция E может иметь произвольный вид, обучение в общем случае – многоэкстремальная невыпуклая задача оптимизации.

Для решения этой задачи могут использоваться следующие (итерационные) алгоритмы:

1. Алгоритмы локальной оптимизации с вычислением частных производных первого порядка:

градиентный алгоритм (метод наискорейшего спуска),

методы с одномерной и двумерной оптимизацией целевой функции в направлении антиградиента,

метод сопряженных градиентов,

методы, учитывающие направление антиградиента на нескольких шагах алгоритма.

2. Алгоритмы локальной оптимизации с вычислением частных производных первого и второго порядка:

метод Ньютона,

методы оптимизации с разреженными матрицами Гессе,

квазиньютоновские методы,

метод Гаусса – Ньютона,

метод Левенберга – Марквардта и др.

3. Стохастические алгоритмы оптимизации:

поиск в случайном направлении,

имитация отжига,

метод Монте-Карло (численный метод статистических испытаний).

4. Алгоритмы глобальной оптимизации (задачи глобальной оптимизации решаются с помощью перебора значений переменных, от которых зависит целевая функция).

2.8. Алгоритм обучения однослойного нейрона

Обучение нейронной сети в задачах классификации происходит на наборе обучающих примеров X(1), X(2), …, X(Р), в которых ответ – принадлежность к классу А или B – известен. Определим индикатор D следующим образом: положим D(X)=1, если X из класса А, и положим D(X)=0, если X из класса B, то есть

Поделиться:
Популярные книги

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Путешествие в Градир

Павлов Игорь Васильевич
3. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Путешествие в Градир

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

В тени большого взрыва 1977

Арх Максим
9. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В тени большого взрыва 1977

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Бальмануг. (Не) Любовница 1

Лашина Полина
3. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 1

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Совок – 3

Агарев Вадим
3. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
7.92
рейтинг книги
Совок – 3